① 核彈頭一般有多少重啊!
用能自持進行核裂變或聚變反應釋放的能量,產生爆炸作用,並具有大規模殺傷破壞效應的武器的總稱。其中主要利用鈾235(厬U) 或鈈239(厱Pu)等重原子核的裂變鏈式反應原理製成的裂變武器,通常稱為原子彈;主要利用重氫(娝H,氘)或超重氫(婤H,氚)等輕原子核的熱核反應原理製成的熱核武器或聚變武器,通常稱為氫彈。
煤、石油等礦物燃料燃燒時釋放的能量,來自碳、氫、氧的化合反應。 一般化學炸葯如梯恩梯(TNT)爆炸時釋放的能量,來自化合物的分解反應。在這些化學反應里,碳、氫、氧、氮等原子核都沒有變化,只是各個原子之間的組合狀態有了變化。核反應與化學反應則不一樣。在核裂變或核聚變反應里,參與反應的原子核都轉變成其他原子核,原子也發生了變化。因此,人們習慣上稱這類武器為原子武器。但實質上是原子核的反應與轉變,所以稱核武器更為確切。
核武器爆炸時釋放的能量,比只裝化學炸葯的常規武器要大得多。 例如,1千克鈾全部裂變釋放的能量約8×1013焦耳,比1千克梯恩梯炸葯爆炸釋放的能量4.19×106焦耳約大2000萬倍。因此,核武器爆炸釋放的總能量,即其威力的大小,常用釋放相同能量的梯恩梯炸葯量來表示,稱為梯恩梯當量。美、蘇等國裝備的各種核武器的梯恩梯當量,小的僅1000噸,甚至更低;大的達1000萬噸,甚至更高。
核武器爆炸,不僅釋放的能量巨大,而且核反應過程非常迅速,微秒級的時間內即可完成。因此,在核武器爆炸周圍不大的范圍內形成極高的溫度,加熱並壓縮周圍空氣使之急速膨脹,產生高壓沖擊波。地面和空中核爆炸,還會在周圍空氣中形成火球,發出很強的光輻射。核反應還產生各種射線和放射性物質碎片;向外輻射的強脈沖射線與周圍物質相互作用,造成電流的增長和消失過程,其結果又產生電磁脈沖。這些不同於化學炸葯爆炸的特徵,使核武器具備特有的強沖擊波、光輻射、早期核輻射、放射性沾染和核電磁脈沖等殺傷破壞作用。核武器的出現,對現代戰爭的戰略戰術產生了重大影響。
原子彈主要是利用核裂變釋放出來的巨大能量來起殺傷作用的一種武器。它與核反應堆一樣,依據的同樣是核裂變鏈式反應。
按理,反應堆既然能實現鏈式反應,那麼只要使它的中子增殖系數k大於1,不加控制,鏈式反應的規模將越來越大,則最終會發生爆炸。也就是說,反應堆也可以成為一顆「原子彈」。實際上也是這樣,若增殖系數k大於1而不加控制的話,反應堆確實會發生爆炸,所謂反應堆超臨界事故就是屬於這樣一種情況。
但是,反應堆重達幾百噸、幾千噸,無法作為武器使用。而且在這種情況下,裂變物質的利用率很低,爆炸威力也不大。因此,要製造原子彈,首先要減小臨界質量,同時要提高爆炸威力。這就要求原子彈必須利用快中子裂變體系,裝葯必須是高濃度的裂變物質,同時要求裝葯量大大超過臨界質量,以使增殖系數k遠遠大於1。
在講述原子彈的結構原理之前,我們先來介紹一下原子彈的裝葯。到目前為止,能大量得到、並可以用作原子彈裝葯的還只限於鈾235、鈈239和鈾233三種裂變物質。
鈾235是原子彈的主要裝葯。要獲得高加濃度的鈾235並不是一件輕而易舉的事,這是因為,天然鈾235的含量很小,大約140個鈾原子中只含有1個鈾235原子,而其餘139個都是鈾238原子;尤其是鈾235和鈾238是同一種元素的同位素,它們的化學性質幾乎沒有差別,而且它們之間的相對質量差也很小。因此,用普通的化學方法無法將它們分離;採用分離輕元素同位素的方法也無濟於事。
為了獲得高加濃度的鈾235,早期,科學家們曾用多種方法來攻此難關。最後「氣體擴散法」終於獲得了成功。
我們知道,鈾235原子約比鈾238原子輕1.3%,所以,如果讓這兩種原子處於氣體狀態,鈾235原子就會比鈾238原子運動得稍快一點,這兩種原子就可稍稍得到分離。氣體擴散法所依據的,就是鈾235原子和鈾238原子之間這一微小的質量差異。
這種方法首先要求將鈾轉變為氣體化合物。到目前為止,六氮化鈾是唯一合適的一種氣體化合物。這種化合物在常溫常壓下是固體,但很容易揮發,在56.4℃即升華成氣體。鈾235的六氟化鈾分子與鈾238的六氟化鈾分子相比,兩者質量相差不到百分之一,但事實證明,這個差異已足以使它們分離了。
六氟化鈾氣體在加壓下被迫通過一個多孔隔膜。含有鈾235的分子通過多孔隔膜稍快一點,所以每通過一個多孔隔膜,油235的含量就會稍增加一點,但是增加的程度是十分微小的。因此,要獲得幾乎純的鈾235,就需要讓六氟化鈾氣體數千次地通過多孔隔膜。
氣體擴散法投資很高,耗電量很大,雖然如此,這種方法目前仍是實現工業應用的唯一方法。為了尋找更好的鈾同位素分離方法,許多國家做了大量的研究工作,已取得了一定的成績。例如目前離心法已向工業生產過渡,噴嘴法等已處於中間工廠試驗階段,而新興的冠醚化學分離法和激光分離法等則更有吸引力。可以相信,今後一定會有更多更好的分離鈾同位素的方法付諸實用,氣體擴散法的壟斷地位必將結束。
原子彈的另一種重要裝葯是鈈239。鈈239是通過反應堆生產的。在反應堆內,鈾238吸收一個中子,不發生裂變而變成鈾239,鈾239衰變成鎿239,鎿239衰變成鈈239。由於鈈與鈾是不同的元素,因此雖然只有很少一部分鈾轉變成了鈈,但鈈與鈾之間的分離,比起鈾同位素間的分離來卻要容易得多,因而可以比較方便地用化學方法提取純鈈。
鈾233也是原子彈的一種裝葯,它是通過釷232在反應堆內經中子轟擊,生成釷233,再相繼經兩次β衰變而製得。
從上面我們可以看到,後兩種裝葯是通過反應堆生產的。它們是依靠鈾235裂變時放出的中子生成的,也就是說,它們的生成是以消耗鈾235為代價的,絲毫也離不開鈾235。從這個意義上來說,完全可以把鈾235稱作「核火種」,因為沒有鈾235就沒有反應堆,就沒有原子彈,就沒有今天大規模的原子能利用。
有了核裝葯,只要使它們的體積或質量超過一定的臨界值,就可以實現原子彈爆炸了。只是這里還有一個原子彈的引發問題,也就是如何做到:不需要它爆炸時,它就不爆炸;需要它爆炸時,它就能立即爆炸。這可以通過臨界質量或臨界尺寸的控制來實現。
從原理上講,最簡單的原子彈採用的是所謂槍式結構。兩塊均小於臨界質量的鈾塊,相隔一定的距離,不會引起爆炸,當它們合在一起時,就大於臨界質量,立刻發生爆炸。但是若將它們慢慢地合在一起,那麼鏈式反應剛開始不久,所產生的能量就足以將它們本身吹散,而使鏈式反應停息,原子彈的爆炸威力和核裝葯的利用率就很小,這與反應堆超臨界事故爆炸時的情況有些相似。因此關鍵問題是要使它們能夠極迅速地合在一起。
這可以象旁圖所示的那樣,將一部分鈾放在一端,而將另一部分鈾放在「炮筒」內,藉助於烈性炸葯,極迅速地將它們完全合在一起,造成超臨界,產生高效率的爆炸。為了減少中子損失,核裝葯的外面有一層中子反射層;為了延遲核裝葯的飛散,原子彈具有堅固的外殼。
1945年8月,美國投到日本廣島的那顆原子彈(代號叫「小男孩」)採用的就是槍式結構,彈重約4100公斤,直徑約71厘米,長約305厘米。核裝葯為鈾235,爆炸威力約為14000噸梯恩梯當量。
在槍式結構中,每塊核裝葯不能太大,最多隻能接近於臨界質量,而決不能等於或超過臨界質量。因此當兩塊核裝葯合攏時,總質量最多隻能比臨界質量多出近一倍。這就使得原子彈的爆炸威力受到了限制。
另外在槍式結構中,兩塊核裝葯雖然高速合攏,但在合攏過程中所經歷的時間仍然顯得過長,以致於在兩塊核裝葯尚未充分合並以前,就由自發裂變所釋放的中子引起爆炸。這種「過早點火」造成低效率爆炸,使核裝葯的利用率很低。一公斤鈾235(或鈈239)全部裂變,大約能釋放18000噸梯恩梯當量的能量,一顆原子彈的核裝葯一般為15~25公斤鈾235(或6~8公斤鈈239),以此計算,「小男孩」的核裝葯利用率還不到百分之五。
鈾在正常壓力下的密度約為19克/厘米³。在高壓下,鈾可被壓縮到更高的密度。研究表明,對於一定的裂變物質,密度越高,臨界質量越小。
根據這一特性,在發展槍式結構的同時,還發展了一種內爆式結構。在槍式結構中,原子彈是在正常密度下用突然增加裂變物質數量的方法來達到超臨界,而內爆式結構原子彈則是利用突然增加壓力,從而增加密度的方法達到超臨界。
在內爆式結構中,將高爆速的烈性炸葯製成球形裝置,將小於臨界質量的核裝料製成小球,置於炸葯中。通過電雷管同步點火,使炸葯各點同時起爆,產生強大的向心聚焦壓縮波(又稱內爆波),使外圍的核裝葯同時向中心合攏,使其密度大大增加,也就是使其大大超臨界。再利用一個可控的中子源,等到壓縮波效應最大時,才把它「點燃」。這樣就實現了自持鏈式反應,導致極猛烈的爆炸。
內爆式結構優於槍式結構的地方,在於壓縮波效應所需的時間遠較槍式結構合攏的時間短促,因而「過早點火」的幾率大為減小。這樣,內爆式結構就可以使用自發裂變幾率較大的裂變物質,如鈈239作核裝葯;同時使利用效率大為增。
美國投於日本長崎的那顆原子彈(代號叫「胖子」),採用的就是內爆式結構,以鈈239作核裝葯。彈重約4500公斤,彈最粗處直徑約152厘米,彈長約320厘米,爆炸威力估計為20000噸梯恩梯當量。
原子彈的進一步發展就是氫彈,或稱為熱核武器。氫彈利用的是某些輕核聚變反應放出的巨大能量。它的裝葯可以是氘和氚,也可以是氘化鋰6,這些物質稱為熱核材料。按單位重量的物質計,核聚變反應放出的能量比裂變反應更多,而且沒有所謂臨界質量的限制,因而氫彈的爆炸威力更大,一般要比原子彈大幾百倍到上千倍。
不過熱核反應只有在極高的溫度(幾千萬度)下才能進行,而這樣高的溫度只有在原子彈爆炸時才能產生,因此氫彈必須用原子彈作為點燃熱核材料的「雷管」。
氫彈爆炸時會放出大量的高能中子,這些高能中子能使鈾238發生裂變。因此在一般氫彈外麵包一層鈾238,就能大大提高爆炸威力。這種核彈的爆炸,經歷裂變一聚變—裂變三個過程,所以稱為「三相彈」。它的特點是成本低、威力大、放射性污染多。
還有一種新型核彈,即所謂中子彈。中子彈實際上可能是一種小型氫彈,只不過這種小型氫彈中裂變的成分非常小,而聚變的成分非常大,因而沖擊波和核輻射的效應很弱,但中子流極強。它靠極強的中子流起殺傷作用,據稱能做到「殺人而不毀物」。
我們看到,原子彈是用鈾製造的,也可以用鈈製造,但鈈是通過鈾而製得的。而氫彈則必須用原子彈來引瀑。因此,歸根結幫,核武器、熱核武器的製造都離不開鈾。因此,在過去,在今天,在今後相當長一個時期內,最重的天然元素之所以重要,首先在於軍事上的需要。
核爆炸還可以改造沙漠,使沙漠變成良田。很多乾旱的沙漠地帶其實也有一些雨水,但是這些雨水多半從地面流進地下河流、流入海中,剩下的一點則很快蒸發淖了,因此地面上沒有一點水分,沙漠成了不毛之地。核爆炸可以造成巨大的積水層—「地下水庫」。雨季時,雨水儲在積水層中,然後慢慢地透過多孔的泥土濕潤地表,使之適合於植物的生長。
在美國,從歐洲遷來的匈牙利物理學家齊拉德·萊奧首先考慮到,一旦法西斯德國掌握原子彈技術可能帶來嚴重後果。經他和另幾位從歐洲移居美國的科學家奔走推動,於1939年8月由物理學家A.愛因斯坦寫信給美國第32屆總統F.D.羅斯福,建議研製原子彈,才引起美國政府的注意。但開始只撥給經費6000美元,直到1941年12月日本襲擊珍珠港後,才擴大規模,到1942年8月發展成代號為「曼哈頓工程區」的龐大計劃,直接動用的人力約60萬人,投資20多億美元。到第二次世界大戰即將結束時製成 3顆原子彈,使美國成為第一個擁有原子彈的國家。製造原子彈,既要解決武器研製中的一系列科學技術問題,還要能生產出必需的核裝料鈾235、鈈239。天然鈾中同位素鈾235的豐度僅0.72%,按原子彈設計要求必須提高到90%以上。當時美國經過多種途徑探索研究與比較後,採取了電磁分離、氣體擴散和熱擴散三種方法生產這種高濃鈾。供一顆「槍法」原子彈用的幾十千克高濃鈾,是靠電磁分離法生產的。建設電磁分離工廠的費用約3億美元(磁鐵的導電線圈是用從國庫借來的白銀製造的,其價值尚未計入)。鈈239要在反應堆內用中子輻照鈾238的方法製取。 供兩顆「內爆法」原子彈用的幾十千克鈈239,是用3座石墨慢化、水冷卻型天然鈾反應堆及與之配套的化學分離工廠生產的。以上事例可以說明當時的工程規模。由於美國的工業技術設施與建設未受到戰爭的直接威脅,又掌握了必需的資源,集中了一批國內外的科技人才,使它能夠較快地實現原子彈研製計劃。
② 原子彈為何有這么大威力
有原子彈的國家底氣比較足。原子彈屬於核武器,利用-235等鈾或鈈-239重原子核裂變反應,瞬時釋放出巨大能量的核武器,又稱裂變彈。原子彈的威力通常為幾百至幾萬噸級梯恩梯當量,有巨大的殺傷破壞力.它可由不同的運載工具攜載而成為核導彈、核航空炸彈、核地雷或核炮彈等,或用作氫彈中的初級(或稱扳機),為點燃輕核引起熱核聚變反應提供必需的能量.原子彈主要由引爆控制系統、高能炸葯、反射層、由核裝料組成的核部件、中子源和彈殼等部件組成.引爆控制系統用來起爆高能炸葯;高能炸葯是推動、壓縮反射層和核部件的能源;
為什麼原子彈威力那麼大?
反射層由鈹或鈾-238構成 .鈾-238不僅能反射中子,而且密度較大,可以減緩核裝料在釋放能量過程中的膨脹,使鏈式反應維持較長的時間,從而能提高原子彈的爆炸威力.核裝料主要是鈾-235或鈈-239.為了觸發鏈式反應,必須有中子源提供「點火」中子.核爆炸裝置的中子源可採用:氘氚反應中子源、釙-210-鈹源、鈈-238原子彈爆炸鈹源和鐦-252自發裂變源等.原子彈爆炸產生的高溫高壓以及各種核反應產生的中子、γ射線和裂變碎片,最終形成沖擊波、光輻射、早期核輻射、放射性沾染和電磁脈沖等殺傷破壞因素.原子彈是科學技術的最新成果。
③ 原子彈相當於多少tnt
這個沒有一定的,就像一個普通的炸彈,你往裡面裝的火葯越多威力就越大。核武器也一樣,裡面的核裝葯裝的越多,他的威力就越大。比如美國扔到廣島的原子彈是2萬噸級,也就是說相當於2萬噸 TNT 爆炸威力。
④ 原子彈威力多大一顆原子彈能炸多大面積
其實原子彈爆炸的威力不算大,而世界各國之所以抵制原子彈,主要是使用過原子彈之後的地區不適合人類居住.原子彈爆炸之後產生的沖擊波、震盪等,甚至是溫度,雖然破壞力、毀滅力驚人,但這些都是可以戰後重建的,而最可怕的就是輻射。
就拿日本來說,當年惹怒了美國,被美國使用原子彈炸了,那現場才叫一個慘烈,除卻原子彈爆炸本身產生的沖擊波、高熱之外,核輻射導致日本的那些地區寸草不生,這都過去多少年了, 幾乎還看不到上面植被。
⑤ 原子彈有多少噸
美國在長崎投下的原子彈,重量約4.5噸,威力約2萬噸tnt當量;70年代後期,裝備部隊的「三叉戟」ⅰ潛地導彈,總重量約1.32噸,共8個分導式子彈頭,每個子彈頭威力為10萬噸tnt當量,其比威力同長崎投下的原子彈相比,提高135倍左右。
⑥ 世界核彈儲量排行榜2021世界核武器排名
世界核彈儲量排行榜2021⑦ 一枚原子彈相當於多少子彈
1945年8月6日8時15分,美軍一架B-29轟炸機飛臨日本廣島市區上空,投下一顆代號為「小男孩」的原子彈。炸彈在距地面580米的空中爆炸,在巨大沖擊波的作用下,廣島市的建築全部倒塌,全市24.5萬人口中有7.815萬人當日死亡,死傷總人數達20餘萬,城市化為一片廢墟。這是人類歷史上首次將核武器用於實戰,廣島成為第一座遭受原子彈轟炸的城市。核裝葯為鈾235,爆炸威力約為14000噸梯恩梯當量。美國投於日本長崎的那顆原子彈(代號叫「胖子」),爆炸威力估計為20000噸梯恩梯當量。後來研製的原子彈的爆炸威力更大,原子彈的進一步發展就是氫彈,或稱為熱核武器。氫彈的爆炸威力更大,一般要比原子彈大幾百倍到上千倍。第二次世界大戰期間,美國在德國和日本投下的炸彈,總計約200萬噸梯恩梯,只相當於一架轟炸機攜載2枚氫彈的當量。後來原子彈爆炸試驗都是在受控情況下開展的,僅限於試驗場區域,因此面積可大可小。總之,一枚原子彈或氫彈可以摧毀一座城市。美國和俄羅斯擁有的核武器最多的時候可以毀滅人類幾十次,只把人類毀滅1次連自己都沒有了,要那麼多有什麼用呢?極大的浪費,這么多能源和平利用多好。
⑧ 原子彈多少噸
瘦子重0.34噸,爆炸當量1.3萬噸tnt
小男孩重0.4噸,爆炸當量為2萬噸tnt
一般
胖子0.4545噸,爆炸當量也是2萬噸左右
在比基尼環礁進行的海軍十字路口行動中採用的able(原子彈代稱glida)和baker(核彈代號比基尼上的海倫)當量都是2.3萬噸tnt
⑨ 人類歷史上的第一顆原子彈是如何誕生的威力有多大
聽到原子彈人們都會很畏懼,要說原子彈的威力是有多大。如果有足夠多的原子彈是可以把整個地球給摧毀掉。想想都很可怕,現在都在限制核武器的研發了,估計人類怕自己自食惡果吧。