Ⅰ 綠色能源有哪些呀
綠色能源有
綠色能源包括水力發電、風力發電、太陽能、生物能(沼氣)、地熱能(包括地源和水源)海潮能這些能源。
綠色能源消耗後可得到恢復補充,不產生或極少產生污染物。如太陽能、風能,生物能、水能,地熱能,氫能等。中國是國際潔凈能源的巨頭,是世界上最大的太陽能、風力與環境科技公司的發源地。
在生產及消費過程中盡可能減少對生態環境的污染,包括使用低污染的化石能源(如天然氣等)和利用清潔能源技術處理過的化石能源。
核能雖然屬於清潔能源,但消耗鈾燃料,不是可再生能源,投資較高,而且幾乎所有的國家,包括技術和管理最先進的國家,都不能保證核電站的絕對安全。
綠色能源
人們常常提到的綠色能源,如太陽能、氫能、風能等,但另一類綠色能源,就是綠色植物給我們提供的燃料,我們就管它叫做綠色能源,又叫生物能源或物質能源。其實,綠色能源是一種古老的能源,千萬年來,我們的祖先都是伐樹、砍柴燒飯、取暖、生息繁衍。
這樣生存的後果是給自然生態平衡帶來了嚴重的破壞。沉痛的歷史教訓告訴我們,利用生物能源,維持人類的生存,甚至造福於人類,必須按照它的自然規律辦事,既要利用它,又要保護它,發展它,使自然生態系統保持良性循環。但在綠色能源中,另一種資源是草類。
據統計資料表明,目前世界上的草場面積有26億公頃,絕大部分是天然草場。它既能放牧,又是野生動物生息繁衍的樂園。還有一部分草場專為牲畜越冬提供飼料,極少部分的草場才是為人們生活提供燃料的。
近年來,由於廣大農民生活水平的提高,電氣化程度也在不斷地提高,大多數農民們的燃料結構發生了根本性的變化,許多農民朋友,冬季取暖不再用柴火燒炕,而是電熱毯一插溫暖如春,做飯也不再燒柴、燒秸稈了,而是用上了蜂窩煤爐、液化氣灶以及沼氣。
即使燒秸稈,也是邊遠山區極少一部分,或個別農家。而大量的秸稈堆放在田間,成堆成山,有的甚至侵佔了農田。因此,有的農民在田間大量焚燒秸稈,造成環境污染,甚至影響高速路行車和飛機起降。
Ⅱ 生物質能源是什麼
中國已經開發出多種固定床和流化床氣化爐,以秸稈、木屑、稻殼、樹枝為原料生產燃氣。2006年用於木材和農副產品烘乾的有800多台,村鎮級秸稈氣化集中供氣系統近600處,年生產生物質燃氣2,000萬立方米。
中國政府及有關部門對生物質能源利用也極為重視,己連續在四個國家五年計劃將生物質能利用技術的研究與應用列為重點科技攻關項目,開展了生物質能利用技術的研究與開發,如戶用沼氣池、節柴炕灶、薪炭林、大中型沼氣工程、生物質壓塊成型、氣化與氣化發電、生物質液體燃料等,取得了多項優秀成果。政策方面,2005年2月28日,第十屆全國人民代表大會常務委員會第十四次會議通過了《可再生能源法》,2006年1月1日起已經正式實施,並於2006年陸續出台了相應的配套措施。這表明中國政府已在法律上明確了可再生能源包括生物質能在現代能源中的地位,並在政策上給予了巨大優惠支持,因此,中國生物質能發展前景和投資前景極為廣闊。
目前市場還處在發展期,技術和市場還不夠完善.
民用的相對比較多,但概念炒作嚴重,市場比較混亂;
工業市場發展比較慢,很多技術還不夠成熟,切入的企業也不是很多;
但隨著發展環境的變好,近幾年生物質能源行業將會快速發展.
Ⅲ 給我一點關於「生物與新能源」的資料
美科學家利用微生物讓碎草雜物都變成可用新能源
2007/7/11 9:36:00
來源:科技日報/李學華
在美國加州大學戴維斯分校周圍的農田裡,有一排排裝滿微生物的大桶,這些微生物每天要吞食掉8噸來自賓館飯店和自助餐廳的殘渣剩飯、碎草雜物等垃圾,生產出30萬升—60萬升生物氣體。這種氣體可用於燃燒發電,也可以壓縮成液化燃料使用。這是由該校生物工程專家張瑞紅(音譯)設計的利用微生物將各種生活垃圾轉化成生物氣體的生物反應器。
這個生物反應器與以往要在水中進行的厭氧生物反應器不同,它可以直接對固體,如食物等生活垃圾進行轉化,而且轉化速度要比通常的系統快30%—50%,產生非常干凈的氣體(主要是甲烷和氫氣),其燃燒後放出的有害物質要遠少於目前使用的汽油和柴油。
目前為止,科學家對微生物如何將這些廢物轉化成氣體的機理知之甚少。最近2年來,快速便宜的基因測序手段為微生物學家研究微生物種群提供了新的工具。通過對這些微生物基因進行測序,科學家希望進一步了解它們的作用機理,找到更有效的利用方法。科學家從生物反應器里取一小塊泥巴,就可以從中分離出DNA,測出整個微生物種群的基因序列。美國能源部聯合基因組研究所計劃明年對張瑞紅反應器中的微生物進行基因測序,這將有助於科學家了解在反應器中都有哪些微生物,哪些基因是占據主導地位的。同時,科學家還將測試在不同溫度和酸鹼度條件下,這些微生物種群是如何變化的。這對整個系統的轉化效率有極大影響。
張瑞紅認為,對這些微生物進行基因測序,將使我們更好地了解誰在唱主角,我們可以更准確地控制條件,改進設計,進一步提高將廢物轉化成氣體的效率。她還說,當地政府和一些食品廠家對這項很有潛力的可以減少垃圾的環保技術很感興趣,她已和當地一家生物公司合作,准備將這項技術商業化。
----------------------------------------------------------------------
毒氣+水=氫氣:新的微生物帶來新能源?
文/王東
06年01期
論壇
編者按:最近,美國的研究人員發現一種在溫泉里生存,並能吸收一氧化碳,與水化合釋放出氫氣的微生物。這個發現也許給人們對獲得氫能源提供了一個新的思路。
取一壺滾燙的熱水,除去裡面的氧氣,混入一些有毒的一氧化碳,最後加入少許的氫氣,這聽上去像女巫配製毒液的處方。可是,這是像Carboxydothermus hydrogenoformans之類的微生物首選的生存環境。
在2005年11月27日出版的《科學公共圖書館遺傳學》(PLoS Genetics)雜志上發表的一篇論文里,美國基因組研究所(The Institute for Genomic Research)科學家領導下的研究小組報道了對這種有機體完整的基因組序列的判定和分析。這種從俄羅斯的火山島國後島(Kunashir)的溫泉里分離出來的微生物的生命幾乎完全依賴一氧化碳。當它正常的消耗有毒氣體時,與水混合就產生了「廢氣」——氫氣。
當世界愈加認為氫氣是種潛在的生物燃料時,獲取這種微生物的基因組就越顯得意義非常。「C. hydrogenoformans是種能快速生長的微生物,它能把水和一氧化碳轉化成氫氣」TIGR 進化學生物學家、PLoS Genetics研究處高級作家喬納森•埃爾森(Jonathan Eisen)評論說,「如果你對生產一種新的清潔燃料感興趣,這種微生物將會給你提供一個極好的開始。」
在測定這種微生物的基因組序列中,埃爾森和他的合作者發現在一氧化碳上的C. hydrogenoformans比其它物種生長得更為迅速的原因。值得誇耀的是這種微生物有至少五種不同的蛋白質生成器,它們能把一氧化碳用作脫氫酶,這樣生成器能控制有毒氣體。每一種生成器看上去都允許生物體用不同的方式利用一氧化碳。依賴一氧化碳存活的其它大部分生物體只有一種這樣的生成器。換句話說,如果其他的生物體有適合的混合容器來處理它們的晚餐——一氧化碳,這些物種才能成為真正的食品加工機,才使它們能夠整天暴食溫泉所提供的「自助餐」。
「發現表明微生物基因組序列對開發地球上廣闊領域內的微生物生命的有益功能,具有延續價值。」美國能源部(DOE)科學辦公室分部—生物環境研究辦公室主任阿里•帕特納斯(Ari Patrinos)說。資助這一研究的美國能源部正在尋找能生產清潔燃料的技術。
在它的基因組序列被確認之前,人類對這種能排出氫氣的生物體知之甚少。利用計算機技術對其它生物體分析和對比,研究人員發現許多顯著的特徵。例如,基因組能夠把一組完整的基因編譯成能製造芽孢的密碼,一種先前微生物不知名的能力。能製造芽孢的生物體最近引起了研究人員的極大興趣,因為這一過程是在能引發炭疽熱的細菌體內發現的,而炭疽之所以能夠被用作生化武器,就是因為芽孢有抗熱、抗輻射等特性。用這種基因組與那些製造芽孢的其他物種(包括炭疽病原體)的基因組相對比,埃爾森和他的同事確定對任何微生物形成芽孢可能所必需的最小生物化學機械。這種對吞噬有毒氣體的微生物的研究或許能幫助我們更好的理解引起炭疽熱的病菌生物學。
為了更好地完成這項研究工作,TIGR的科學家們以這種生物體的基因組為杠桿,對不同溫泉里的微生態環境加以研究,他們想知道在不同的溫泉會發現什麼種類的微生物以及它們存在的原因。為了查明這些,研究人員對美國黃石國家公園、俄羅斯和廣泛分布在其他場所的溫泉進行研究,並分離和破譯在那裡發現的微生物的基因組。
「現在,甚至一些簡單的問題,我們都無法回答。相似的溫泉,孤立的世界能共享類似的微生物嗎?微生物是怎樣在溫泉間游動的?我們的新工作將幫助我們發現這些真相。」 埃爾森說。
文章來源:The Institute for Genomic Research
--------------------------------------------------------------------
生物新能源跟蹤
信息來源:人民日報
香港和寶國際控股有限公司採用自主擁有的生物活性引透技術,在以甜菜為原料生產生物質乙醇的研發實踐中,取得了突破性成果,並經其設在寧夏銀川的工廠近兩年的工業化生產實踐,使利用非糧食原料、低成本生產乙醇,實現「不與人爭糧,不與糧爭地,不與財政爭錢」成為可能。
香港和寶國際2006年開始擁有自主知識產權並處於世界領先地位的生物活性引透生產非糧食類乙醇技術。該技術具有投資少、成本低、出酒率高、生產工藝兼容性強、污染程度低等一系列明顯優勢,已獲得國內高新技術項目認定。公司2007年在寧夏銀川建成年產1.5萬噸96%乙醇的工業示範基地,並成功地在世界上第一次用生物活性引透技術以甜菜為原料生產出乙醇,且達到了工業化目標
---------------------------------------------------------------
首個20萬噸項目投產 我國燃料乙醇真正"非糧化"
信息來源:上海證券報
在發改委叫停玉米制乙醇項目後,非糧乙醇的產業優勢日益凸顯。近日,中糧集團投資的年產20萬噸燃料乙醇項目正式在廣西北海投產,成為我國迄今為止唯一投入生產的非糧燃料乙醇項目。專家表示,此舉意味著中國燃料乙醇的發展路線將真正走向「非糧化」。
作為替代能源,以玉米為主要原料的燃料乙醇近年在國內迅猛增長,在一定程度上緩解了能源緊缺,但過度發展也帶來糧食方面的隱患。數據表明,近年來中國生物燃料工業加工產能擴張過快,增長幅度超過玉米生產增長水平。2001年中國玉米工業加工轉化消耗玉米僅為1250萬噸,2005年增加到2300萬噸以上,增長了84%;而同期玉米產量增長了21.9%,遠低於工業加工產能擴張的速度。更值得警惕的是,粗放型加工已造成初級產品增多、玉米轉化利用效率不高和嚴重的污染。
針對國內一些地方盲目發展玉米加工乙醇能力的情況,國家發改委去年底下發緊急通知,要求「立即暫停核准和備案玉米加工項目,並對在建和擬建項目進行全面清理。」前不久,原發改委副主任陳德銘明確提出,我國今後將積極發展非糧生物液體燃料,到2020年形成年替代1000萬噸石油的能力。
此次投產的我國首個非糧燃料乙醇項目正是在上述背景下應運而生的。和國內其他燃料乙醇項目以玉米為原料有所不同,該項目的原料來源是木薯。廣西是國內木薯主產區,北海市木薯種植面積為15萬畝,年產鮮薯22.5萬噸。20萬噸燃料乙醇項目年需鮮木薯150萬噸(折成乾片為61萬噸)。
據介紹,這一項目於2006年12月24日正式動工,選址北海合浦工業園區,佔地550畝,總投資14.6億元,分兩期建設。其中,燃料乙醇一期項目建設投資7.6億元,年產燃料乙醇20萬噸、纖維飼料5萬噸、沼氣2970萬立方米、二氧化碳5萬噸
記者另從當地獲悉,廣西壯族自治區政府此前已下文通知,為推動生物質能源產業發展,從2008年2月起,當地將封閉銷售車用乙醇汽油,以實現車用乙醇汽油替代其他汽油(軍隊特需、國家和特種儲備用油除外)。
「這是中國燃料乙醇發展真正走向『非糧化』的一個標志。」一位專家如此評價該項目投產的意義。
Ⅳ 生物能源的研發狀況及前景
。《2020年歐盟能源展望評估報告》指出,到2010年,歐盟能源消費將平均增長0.7%。由於能源消費的基數本來已經很大,因此未來歐盟對能源資源的需求將十分巨大。因此,大力開發節約型替代能源便成為歐盟今後一項重要的能源課題。
據悉,歐盟決定全力發展以本地資源為重點的節約型能源,其中,風力發電、太陽能發電垃圾發電和生物能源最被看好。
在眾多替代能源中,目前最令人青睞的是生物能源。統計表明,2003年歐盟生物能源的產量逾174萬噸,而2002年只有137萬噸,一年時間就增加了26%左右。
根據歐盟的計劃,到2010年生物能源的產量可望增加到1100萬噸。
據介紹,所謂生物能源,目前主要是指生物乙醇和生物石油。生物乙醇的原料是秸稈、玉米、甜菜、甘蔗、小麥、大麥等,通過發酵和糖分轉化等加工過程,製成酒精。
這種酒精按一定比例可直接與石油相混合,也可與汽油相混合,目前與汽油混合的比例在5%-10%。使用這種混合燃料的發動機可不用做任何改動,不但不會降低發動機的功率,還有助於減少有害氣體的排放,同時使汽油得到更加充分的燃燒,從而減少了大氣污染,達到保護環境的目的。
生物柴油來自所有含油的植物和動物油脂,專家認為,生物柴油是優質石油最有前途的替代品。與傳統的柴油相比,生物柴油使用時的燃燒更加充分,同時也更加安全,便於儲存。
在同樣情況下,使用生物柴油可以節油15%-30%,溫室效應氣體排放可減少45%左右。正因如此,歐盟各個成員國先後制定了各種法律法規,這種法律法規從資金、稅收、研發貸款、立項等各個方面提供方便,從而推動了歐盟生物能源的發展。
生物能源的發展前景
摘要:目前,生物質能的利用佔世界總能耗的14%,相當於12.57億噸石油。在發展中國家,生物質能占總能耗的35%,相當於11.88億噸石油。目前全世界仍有25億人口用生物質能做飯。取暖和照明。但是生物質利用總量還不到其生產總量的1%,由此可見,生物質能的開發利用前景十分廣闊。生物質能的開發利用有利於改善環境,同時可以滿足我們對能源的需求。由綠色植物派生的生物質包括:城市垃圾、有機廢水、糞便、林業生物質、農業廢棄物、水生植物以及能源植物等。
多少年來,人類文明發展主要依賴於節制地開發利用煤、石油、天然氣等化石燃料等自然資源。對由此帶來的環境污染,走的是先污染後治理的路子。為此我們付出了怎樣的代價?它給人類帶來沉痛的教訓是:奢侈的資源浪費,過低的能源利用率和不可容忍的環境污染。
人類使用的三大主要能源是原油、天然氣和煤炭,但它們都是不可再生的能源。據國際能源機構的統計,這三種能源還能供開採的年限,分別只有40年、50年和240年。開發新能源已成為人類發展中的緊迫課題,核能還將有所發展,太陽能、風能、地熱能、波浪能和氫能這五種新能源,今後將會優先獲得開發利用。另一個值得重視的新能源是可再生的生物能源。
我國雖已探明煤儲量6000億t,石油70億t,水力發電6.8億k但由於1978年以來我國總的能源利用率已超過30%,能源分布不均勻,能源產量低和農村能源供應短缺等因素,致使能源供應趨於緊張。開發利用生物能源,在這方面可以起到顯著的緩解作用。特別是在農村年產稻殼3225萬t,玉米芯1250萬t,甘蔗渣400萬t,棉籽殼200萬t,糠醛渣30萬t,人畜糞便1380萬t的條件下,可用微生物作用年產沼氣達14.28×108m3,相當於25.94×106t標准煤,從而徹底改變現在農村能源短缺的狀況。
我國現在因利用能源而導致嚴重的環境污染,例如煙塵和SO2年排放量為2857萬t,燃燒後的垃圾排放為年均573000萬t,因薪柴之用破壞森林植被導致每年土壤流失50億t。利用生物生產能源和對其進行利用,不僅沒有環境污染問題出現,而且還可使目前污染嚴重的環境狀況得以緩解。
數百年來在燃料王國里唱「主角」的煤和石油都是遠古時代的動植物生成的,那麼能否種植能源作物,直接從能源作物生產燃料?這是21世紀普遍關注的一個新問題。理想的生物燃料作物應具有高效光合能力,到目前為止,科學家們已發現了40多種能夠生產「石油」的植物。
生物質能是由植物與太陽能的光合作用而貯存於地球上植物中的太陽能,最有可能成為21世紀主要的新能源之一。據估計,植物每年貯存的能量相當於世界主要燃料消耗的10倍,而作為能源的利用量還不到其總量的1%。通過生物質能轉換技術,可以高效地利用生物質能源,生產各種清潔燃料,替代煤炭、石油和天然氣等燃料。由此可見,發展生物質能源,對保障我國未來能源安全具有重要作用。
專家分析,石油已不是可持續發展的理想汽車燃料,過度依賴存在四大問題,包括:國內資源短缺和國際石油爭奪劇烈的雙重風險;汽柴油的性能已不能滿足汽車高水平和高清潔的可持續發展要求;油價居高不下,用戶負擔增加;依靠進口,要花大量外匯,影響國內就業。巨大的國際采購會使我國原油陷入類似現在鐵礦砂市場的「價格合圍」。適應汽車消費需求,建設車用燃料替代體系成為必然趨勢。
據了解,目前中國汽車保有量超過2000萬輛,2010年將達到5000萬輛至6000萬輛。屆時,國內汽車年生產量將達1000萬輛以上,汽車用成品油市場就將有數千億元。另一方面,環境保護逼迫中國採取石油替代技術。北京、上海等大城市較早對公共交通車輛實行天然氣替代石油等措施,主要是出於環境因素。目前,天然氣、煤炭、生物質能等技術路線替代石油,其燃燒排放都小於石油類40%左右。按我國城市進程,2020年前還將有4億人口「進城」,汽車保有量將急劇增加,不採用潔凈的替代能源將無法維持人類適宜的城市居住環境。有人這樣計算:大城市裡按每車每天用15KG汽、柴油計,100萬台車即用1.5萬噸汽、柴油,它將耗盡18338萬立方米空氣中的氧氣,使之變成只含二氧化碳和和氮氣等的無氧氣體。又因二氧化碳比空氣重得多,所以,它們大都分布在地面附近,可在100平方公里范圍內堆積1.83米厚,比正常的中國人還高出一巴掌。如果沒有大自然賜予的空氣流動,這將是一種多麼可怕的情景呀!
[NextPage]
中國工程院院士,國家生化工程技術研究中心主任、南京大學校長歐陽平凱說,美國國家委員會預測,到2020年,將有50%有機化學品和材料來自生物質原料。我國最先起步的是生物質轉化替代石油,即乙醇汽油。生物柴油是利用植物油脂、動物油脂等提煉的車用燃料,可直接替代柴油,低排放,無需改造發動機,而且對車輛發動機還有保護作用。世界各國對此非常重視,發展迅速,美國、加拿大、巴西、日本、印度等都有龐大的發展計劃。歐盟國家用菜油加工生物柴油,2001年加工量已達100萬噸。本世紀我國政府也很重視這項工作,近年來相繼建成了許多年產量超萬噸的生物柴油廠,預計到2010年,我國生物柴油需求量將達2000萬噸。
車用能源的市場穩定、數量巨大。石油價格居高不下的情況下,石油延伸替代市場也非常可觀。安徽豐原集團在宿州建設的世界第一個生物質原料乙烯生產廠,2004年底投產,年產2萬噸,效益可觀。2005年7月底,記者當企業采訪,負責人吳玉熙介紹,「當原油價格在每桶35美元左右,企業即可有利潤;到40美元每桶,噸產品利潤可達5000元,原油超過50美元一桶,噸產品利潤可達8000元,利潤率高達35%以上。
接受采訪的專家、企業家強調,石油替代產業還有煤化工替代線路。但用一種緊缺能源替代另一種緊缺能源,只能是權宜之計。生物能源與生物材料產業鏈長,涉及基礎研究、工藝創造、成套設備、運輸分銷、終端產品設計生產,等等。我國正由出口拉動轉向內需接動,能源原材料「內需」強勁,必然呼喚出龐大的的石油替代產業。
如此可見,我國生物能源產業市場前景廣闊.
按目前國內外研究水平,燃料電池汽車、電動汽車、氫動力汽車等仍有很多技術上不確定性,何時投入運營是未知數。混合動力汽車造價高,而且仍以成品油消耗為主。另一方面,石油的應用不僅僅是作為交通運輸的動力,其衍生的乙烯等化工產品還是比鋼鐵應用更廣泛的基礎材料。因此,發展生物能源是必然之路,眼前解決車用燃油問題,中、長期解決後石油時代的能源、原材料問題。
目前,國際上生物能源技術相對成熟,替代石油的路線是:穀物、秸桿、其它植物等-發酵-乙醇-車用油、乙烯、無毒溶劑及上百種化工、原材料產品等;另一種是利用劣質食用油、麻瘋樹籽等直接加工生產高品質車用柴油。無論何種生物質轉化,都是我國資源的「長腿」。發展生物能源是農業大國和「缺油多煤」資源現狀化短為長的最佳契機。
在現在科技水平,工業水平高度發展的今天,發展生物能源是今天解決能源短缺問題必然道路,而且有廣闊的發展空間.
我國發展生物替代能源時不我待
--生物能源發展調查之一
國際市場油價的曰高一曰,曰前超出每桶70美元,給我國高速發展的社會經濟帶來越來越大的壓力。近一個多世紀來,石油是應用最為廣泛的化石能源,有「現代社會血液」之稱。它不僅僅是能源之母,還是紡織、電子、化工、材料等現代工業產品的基礎原材料。油價高漲、資源短缺、環保壓力和高速增長的需要,形成無法調和的矛盾,直接制約我國加速建設「全面小康」和國家安全。記者調查采訪了解到,我國有能力替代石油的生物能源和生物材料產業研究有數十年歷史,在生物質能加工轉化及相關環保技術方面有了一定的積累。專家認為,我國有條件進行生物能源和生物材料規模工業化和產業化,可以在2020年形成產值規模達萬億元,在「石油枯竭拐點」形成部分替代能力。
石油消費仍是我國國民消費水平標志,巨量進口危及社會經濟發展和國家安全
進入本世紀,石油價格上漲已讓很多平常百姓感到壓力。以車用93號汽油為例,目前價格已經從2000年前的1.8元左右上漲到現在的4.4元左右。中國工程院院士、清華大學原副校長倪維斗教授曰前接受記者采訪時介紹:據美國能源部和世界能源理事會預測,全球石化類能源的可開采年限分別為石油39年、天然氣60年、煤211年,而其分布主要在美國、加拿大、俄羅斯和中東地區。中國是石油資源相對貧乏的國家,專家測算石油穩定供給不會超過20年,很可能我們實現「全面小康」的2020年就是石油供給喪失平衡的「拐點年」。
根據國家海關總署提供的資料,我國由1993年變為石油凈進口國。過去的10年中,我國石油需求量幾乎翻了一倍。2004年進口原油1.2億噸,比上年增長34.8%,占國家石油總供給量40%以上。今年石油進口依存度將上升到57%。到2010年,我國石油消費總量將達4億噸。而國內生產能力僅為1.6億噸到1.7億噸。
另外,我國以石油為原料的能源、材料,如乙烯、醇類,需求量激升。2004年實際消費量1600多萬噸,進口量佔40%以上。專家預測,到2010年,此類產品的需要量將上升到3000萬噸左右。這些是化工、電子、汽車、紡織、塑料、能源產品等的基礎原料。而且,目前這類石油加工品的成套設備均為國外大公司壟斷。
據有關部門的粗略統計,2004年一年的國際原油價格上漲,使我國增加支付金額60億到80億美元,相當的2000萬待業職工一年的低保費用。2005年8月25曰,紐約油價再創新高,突破67美元。同時,美國高盛公司預測油價還將繼續上升,最終可能達到每桶105美元。國際貨幣基金組織曰前再次預測,由於中國石油進口持續大幅度增加,國際原油價格將穩定攀升100美元以上。更有專家分析,發達國家將把石油價格不斷推升,作為壓制中國、印度等後發展國家的重要手段。
石油是基礎能源原材料,由於資源制約因而無法調控價格,對國內市場已經造成很大壓力。以安徽為例,3月下旬,安慶市因成品油價格上調引發了計程車行業的罷運、上訪,全市癱瘓。此前,南京等全國大中城市多次發生類似事件發生多起。8月1曰,合肥再度發生因油價直接導致的計程車行業罷運事件。即使不考慮國際政治變幻對我國能源安全的影響,要保證社會經濟健康穩定發展,實現全面小康目標,發展石油替代產業,也成了當務之急。
建設「小康社會」汽車工業發展仍是主流
汽車,被認為是現代小康社會的標志。2000年,我國==提出建設「全面小康」社會。當年,我國汽車銷售市場出現井噴,同時出現由集團購買為主變個人購車為主的重大轉折。安徽奇瑞集團介紹,汽車業界把2000年確定為「中國汽車元年」,認為這是中國汽車進入高速發展時期的起始點。
現在的成品油價格高位運行,對汽車工業發展與產品普及有一定影響,但從發達國家的經驗和我國發展趨勢看,汽車保有量迅速增加之勢不可逆轉。國際貨幣基金組織曰前再次預測,中國到2030年汽車保有量將達3.9億輛,約為現在的20倍。
合肥工業大學是中國汽車人才的搖籃之一。記者采訪中,專家、教授們一致表示:「發達汽車工業」是一個國家步入工業化、現代化的必然支柱。中國科技大學商學院有關「國家經濟發展時期」研究的課題組得出結論,任何發達國家的工業化過程均離不開汽車工業,特別是轎車工業的貢獻。過去的100年間,沒有任何一項發明比得上汽車對人類進步的推動。轎車的普及以民族意識的改變、國民素質的飛躍式提高,有不可比擬的作用。汽車是新技術、新材料、新工藝的集大成者,對技術進步的推動是全方位的。汽車還是高度產業關聯的工業,按公認的數據,以家用轎車為主的汽車工業對輔助產業、相關產業的拉動效應可達1:7:11;調查研究顯示:目前世界上國民生產總值超過1萬億美元的國家有7個,其中包括中國。其餘6個均擁有「具有國際競爭力的汽車工業」,每千人擁有汽車數200-600輛。唯有中國在民族汽車工業方面相對落後,因而同列GDP總值大國,人均則只有6強的二十一分之一。
據國家科技部調研室的一項調查,進入2000年以後,我國汽車市場進入高速增長時期,近兩年增幅超過30%。2003年與上年同比,汽車產量增長35.20%,銷售量增長34.21%。特別轎車,產量由上年的109.28增長到206.89,增幅達84.7%。
我國生物能源產業市場前景廣闊
專家分析,石油已不是可持續發展的理想汽車燃料,過度依賴存在四大問題,包括:國內資源短缺和國際石油爭奪劇烈的雙重風險;汽柴油的性能已不能滿足汽車高水平和高清潔的可持續發展要求;油價居高不下,用戶負擔增加;依靠進口,要花大量外匯,影響國內就業。巨大的國際采購會使我國原油陷入類似現在鐵礦砂市場的「價格合圍」。適應汽車消費需求,建設車用燃料替代體系成為必然趨勢。
據了解,目前中國汽車保有量超過2000萬輛,2010年將達到5000萬輛至6000萬輛。屆時,國內汽車年生產量將達1000萬輛以上,汽車用成品油市場就將有數千億元。另一方面,環境保護逼迫中國採取石油替代技術。北京、上海等大城市較早對公共交通車輛實行天然氣替代石油等措施,主要是出於環境因素。目前,天然氣、煤炭、生物質能等技術路線替代石油,其燃燒排放都小於石油類40%左右。按我國城市進程,2020年前還將有4億人口「進城」,汽車保有量將急劇增加,不採用潔凈的替代能源將無法維持人類適宜的城市居住環境。有人這樣計算:大城市裡按每車每天用15KG汽、柴油計,100萬台車即用1.5萬噸汽、柴油,它將耗盡18338萬立方米空氣中的氧氣,使之變成只含二氧化碳和和氮氣等的無氧氣體。又因二氧化碳比空氣重得多,所以,它們大都分布在地面附近,可在100平方公里范圍內堆積1.83米厚,痹積常的中國人還高出一巴掌。如果沒有大自然賜予的空氣流動,這將是一種多麼可怕的情景呀!
中國工程院院士,國家生化工程技術研究中心主任、南京大學校長歐陽平凱說,美國國家委員會預測,到2020年,將有50%有機化學品和材料來自生物質原料。我國最先起步的是生物質轉化替代石油,即乙醇汽油。生物柴油是利用植物油脂、動物油脂等提煉的車用燃料,可直接替代柴油,低排放,無需改造發動機,而且對車輛發動機還有保護作用。世界各國對此非常重視,發展迅速,美國、加拿大、巴西、曰本、印度等都有龐大的發展計劃。歐盟國家用菜油加工生物柴油,2001年加工量已達100萬噸。本世紀我國==也很重視這項工作,近年來相繼建成了許多年產量超萬噸的生物柴油廠,預計到2010年,我國生物柴油需求量將達2000萬噸。
車用能源的市場穩定、數量巨大。石油價格居高不下的情況下,石油延伸替代市場也非常可觀。安徽豐原集團在宿州建設的世界第一個生物質原料乙烯生產廠,2004年底投產,年產2萬噸,效益可觀。2005年7月底,記者當企業采訪,負責人吳玉熙介紹,「當原油價格在每桶35美元左右,企業即可有利潤;到40美元每桶,噸產品利潤可達5000元,原油超過50美元一桶,噸產品利潤可達8000元,利潤率高達35%以上。
接受采訪的專家、企業家強調,石油替代產業還有煤化工替代線路。但用一種緊缺能源替代另一種緊缺能源,只能是權宜之計。生物能源與生物材料產業鏈長,涉及基礎研究、工藝創造、成套設備、運輸分銷、終端產品設計生產,等等。我國正由出口拉動轉向內需接動,能源原材料「內需」強勁,必然呼喚出龐大的的石油替代產業。
替代能源:替代石油將使我國資源狀況化短為長
--生物能源發展調查之二
按目前國內外研究水平,燃料電池汽車、電動汽車、氫動力汽車等仍有很多技術上不確定性,何時投入運營是未知數。混合動力汽車造價高,而且仍以成品油消耗為主。另一方面,石油的應用不僅僅是作為交通運輸的動力,其衍生的乙烯等化工產品還是比鋼鐵應用更廣泛的基礎材料。因此,發展生物能源是必然之路,眼前解決車用燃油問題,中、長期解決後石油時代的能源、原材料問題。
目前,國際上生物能源技術相對成熟,替代石油的路線是:穀物、秸桿、其它植物等-發酵-乙醇-車用油、乙烯、無毒溶劑及上百種化工、原材料產品等;另一種是利用劣質食用油、麻瘋樹籽等直接加工生產高品質車用柴油。無論何種生物質轉化,都是我國資源的「長腿」。發展生物能源是農業大國和「缺油多煤」資源現狀化短為長的最佳契機。
發展石油替代行業有利於解決「三農」問題
農村、農民和農業的「三農」問題、環境與資源問題,是13億人口大國均衡發展、建立和諧社會的關鍵,建立龐大的「石油替代」能源體系,不僅為我國農業產業化、農村地區城市化提供良好的機遇,是我國相當長時間發展重要驅動力,也是解決這些突出問題的最佳切合點。我國最著名的農業科學家之一、中國科學院院士、中國工程院院士石元春曰前公開提出:讓我國農民「種出綠色大慶」。
據科技部有關單位的調研,我國南方的甘蔗、木薯,中、東部地區的小麥、水稻,北部的土豆、玉米,西部地區的油桐。麻瘋樹,乾旱地區的山芋,等等,都是加工轉化燃料酒精、生物柴油的良好原材料。其中麻瘋樹籽含油率達50%,是製造生物柴油的良好材料。我國西南地區現有10萬畝,到2010年種植面積可達1000萬畝。國家科技部生物技術中心主任王宏廣接受采訪時告訴記者:目前我國富餘的農副產品加工轉化,確可「再造大慶」,即相當於5000萬噸原油。如果把每年農民白白焚燒的秸桿收集處理後加工乙醇,替代車用油,總量可達6000萬到1億噸。已經開始用生物質能加工品全線替代石油產品的安徽豐原集團董事長李榮傑測算:只要石油不低於35美元每桶,用生物質能加工成燃料酒精、生物柴油、乙烯、聚酯等,都有利可圖。
中國工程院院士、天津大學教授王靜康等專家指出:「國際上許多國家和組織的預測表明,本世紀中葉可再生能源在一次性能源消耗中將超過50%。」科技難度更大的生物制氫等一旦投入應用,生物能源前景更為廣闊。可喜的是,我國生物質能富集區往往是老少邊窮地區和純農業區,經濟建設相對落後,發展生物能源不僅經有經濟意義,對解決農業產業化、農村剩餘勞動力轉移、農村地區工業化和建設和諧社會,都有很大意義。中國著名農業專家石元春教授等專家強調:發展生物能源要做到「一石四鳥」:其一,生物質能的全面利用,可解決農民增收問題;其二,中小型加工企業的發展,可以加速農業產業化和農村城鎮化;其三,生物質能與土地資源富集的中部、西部貧困農村的地區會形成中國生物能源企業集群,從而促進和諧社會進程;其四,結合中國能源戰略調整,中國自主品牌汽車工業可以考慮生產適應中國能源體系的生物能源汽車產品,在汽車普及化過程中迎頭趕上,提升競爭力。
發展生物能源和原材料可以做到「四不」
能源、原材料是國家、社會的支撐體系,戰略調整是否會觸及社會基礎和多方利益,從而引發較大的社會震盪?國家科技部中國生物技術發展中心進行了大量了調查研究,中心主任王宏廣總結為「四不」:「不與人爭糧,不與糧爭地,不與傳統行業爭利,不與發達國家爭資源」。
「不與人爭糧,不與糧爭地,不與傳統行業爭利」,這是我國發展生物質能利用的新特點,科技部、發展改革委、清華大學、北京農業大學的研究人員均強調這一點。生物技術開發中心主任王宏廣、北京農業大學教授李十中、大連理工大學生命科學院院長修志龍等表示:我國科學用糧潛力很大,每年陳化糧、飼料用糧約1億噸左右,加工轉化可獲得相當5000萬噸的原油,同時還有30%繼續成為飼料。現狀是每年8000萬噸糧食直接用作飲料,浪費3000萬噸以上的澱粉。利用小麥陳化糧生產燃料酒精的河南天冠燃料乙醇有限公司提供的數據:僅小麥麩皮中提取的物質,價值就和小麥差不多。而目前發展生物能源、生物材料,原料是分布更為廣泛、利用價值更高的植物。如我國科學家研究的甜玉米,每公頃產量可達70噸,可生產6噸以上燃料酒精。南方的木薯、甘蔗,生長廣泛的菊芋、土豆、山芋,等等。這些不宜食用的植物,是轉化為生物能源、材料的最佳原料。另外,我國現在每年僅廢棄的作物秸桿、林業棄置物達10億噸,相當於1億多噸的燃料汽油。
就發展生物能源、材料的土地資源而言,我國有約40億畝的低質地、荒坡、灘塗等,可以用來種植適宜物種;淮河以南還有3億計冬季閑田,用來種油菜生產生物柴油,相當於「再造大慶」。專家介紹,我國加工替代石油產品的農作物、薯類植物研究時間長,來源非常豐富,潛力巨大。早在「七五」、「八五」時期,部委、高校就組織科學家研究、攻關,尋找到很多取之不盡、用之不絕的植物種質。如有穩定的市場,推廣種植條件相當成熟。大連理工大學有教授在山東灘塗種植菊芋(洋生薑)數十萬畝,長勢很好。這種植物我國南北方農民都有小規模種植。在貧瘠的土地上,鹽鹼地、灘塗都可以長得很好,固沙能力還很強。一次種下,自然生長。每年挖取其塊莖即可,第二年還會自己生發。畝產量可達萬斤。糖的含量超過甘蔗30%,甜度是蔗糖的一倍。結合「山川改造」工程,我國可以大量種植生物質能富集的植物。我國西南地區的麻瘋樹等木質油料發展迅速,籽含油率達50%,現有10萬畝,2010年可達1000萬畝。
專家分析,生物質能利用,特別是替代石油的能源、材料產業,前端是農業,中間是發酵等生物轉化,後端依然是現有的大化工。因此,我國大規模發展生物質能產業,並不會對傳統化工工業產生沖擊。同時,我國能源、原材料需求增長過快、消費量較大,傳統石油加工業根本無法滿足市場需求,產品供應保障能力薄弱,現在廣東等地不斷發生「油荒」已是前兆。因此,傳統石化領域對生物能源、原材料普遍看好,中石油公司等國家壟斷性石化公司也在力推生物質能利用。
清華大學劉德華教授等強調:生物質能利用,特別是替代石油,是我國建設和諧社會、解決「農業、能源、環境」難題的最佳切合點。我國的老少邊窮地區生物質能與土地資源富集,通過發展生物產業,可以讓這些地區形成新興產業,讓農村地區形成工業化支點。劉教授專門到青海省調查,青海是德國面積的兩倍,非常適合種植油菜。現在德國生物柴油年產量140萬噸,如果青海能夠發展到德國水平,其產業鏈收益非常可觀。我國新疆棉產區面積廣大,在棉籽中引入一個產油基因,即可讓棉籽產生很高的副效益。我國石油對外依存度超過50%,而且年需求量還要擴大;化石產品對環境的污染曰益嚴重,相比之下,燃料乙醇、生物柴油的污染排放要比化石燃料低50%以上。用生物材料,如聚乳酸等,可製成可降解塑料、綠色塗料和紡織品等。
替代能源:借鑒國外石油代替及生物能源發展經驗
--生物能源發展調查之三
1907年,汽車發明人福特製造出第一台燃燒純乙醇的發動機;20世紀30年代,不少國家用醇類燃燒替代石油作為車用能源;中國==戰爭時期,我方不少汽車就是用乙醇作為燃料。但真正形成替代石油的產業,國外發展歷史已約20多年。
根據發展改革委的調查,以美國、巴西為主的燃料乙醇替代石油產業形成,可分為四個階段:其一,20世紀70年代,國際上第一次石油危機使發達國家和貧油國家重
Ⅳ 新能源有哪些各種新能源的優缺點是什麼
新能源的各種形式都是直接或者間接地來自於太陽或地球內部伸出所產生的熱能。包括了太陽能、風能、生物質能、地熱能、核聚變能、水能和海洋能以及由可再生能源衍生出來的生物燃料和氫所產生的能量。也可以說,新能源包括各種可再生能源和核能。相對於傳統能源,新能源普遍具有污染少、儲量大的特點,對於解決當今世界嚴重的環境污染問題和資源(特別是化石能源)枯竭問題具有重要意義。同時,由於很多新能源分布均勻,對於解決由能源引發的戰爭也有著重要意義。
據世界斷言,石油,煤礦等資源將加速減少。核能、太陽能即將成為主要能源。
聯合國開發計劃署(UNDP)把新能源分為以下三大類:大中型水電;新可再生能源,包括小水電(Small-hydro)、太陽能(Solar)、風能(Wind)、現代生物質能(Modern biomass)、地熱能(Geothermal)、海洋能(Ocean)(潮汐能);傳統生物質能(Traditional biomass)。
一般地說,常規能源是指技術上比較成熟且已被大規模利用的能源,而新能源通常是指尚未大規模利用、正在積極研究開發的能源。因此,煤、石油、天然氣以及大中型水電都被看作常規能源,而把太陽能、風能、現代生物質能、地熱能、海洋能以及核能、氫能等作為新能源。隨著技術的進步和可持續發展觀念的樹立,過去一直被視作垃圾的工業與生活有機廢棄物被重新認識,作為一種能源資源化利用的物質而受到深入的研究和開發利用,因此,廢棄物的資源化利用也可看作是新能源技術的一種形式。
新近才被人類開發利用、有待於進一步研究發展的能量資源稱為新能源,相對於常規能源而言,在不同的歷史時期和科技水平情況下,新能源有不同的內容。當今社會,新能源通常指核能、太陽能、風能、地熱能、氫氣等。
按類別可分為:太陽能 風力發電 生物質能 生物柴油 燃料乙醇 新能源汽車 燃料電池 氫能 垃圾發電 建築節能 地熱能 二甲醚 可燃冰等。
太陽能
太陽能一般指太陽光的輻射能量。太陽能的主要利用形式有太陽能的光熱轉換、光電轉換以及光化學轉換三種主要方式
廣義上的太陽能是地球上許多能量的來源,如風能,化學能,水的勢能等由太陽能導致或轉化成的能量形式。
利用太陽能的方法主要有:太陽電能池,通過光電轉換把太陽光中包含的能量轉化為電能;太陽能熱水器,利用太陽光的熱量加熱水,並利用熱水發電等。
太陽能可分為3種:
1.太陽能光伏 光伏板組件是一種暴露在陽光下便會產生直流電的發電裝置,由幾乎全部以半導體物料(例如硅)製成的薄身固體光伏電池組成。由於沒有活動的部分,故可以長時間操作而不會導致任何損耗。簡單的光伏電池可為手錶及計算機提供能源,較復雜的光伏系統可為房屋照明,並為電網供電。 光伏板組件可以製成不同形狀,而組件又可連接,以產生更多電力。近年,天台及建築物表面均會使用光伏板組件,甚至被用作窗戶、天窗或遮蔽裝置的一部分,這些光伏設施通常被稱為附設於建築物的光伏系統。
2.太陽熱能 現代的太陽熱能科技將陽光聚合,並運用其能量產生熱水、蒸氣和電力。除了運用適當的科技來收集太陽能外,建築物亦可利用太陽的光和熱能,方法是在設計時加入合適的裝備,例如巨型的向南窗戶或使用能吸收及慢慢釋放太陽熱力的建築材料。
3.太陽光合能:植物利用太陽光進行光合作用,合成有機物。因此,可以人為模擬植物光合作用,大量合成人類需要的有機物,提高太陽能利用效率。
核能
核能是通過轉化其質量從原子核釋放的能量,符合阿爾伯特·愛因斯坦的方程E=mc^2;,其中E=能量,m=質量,c=光速常量。核能的釋放主要有三種形式:
A.核裂變能
所謂核裂變能是通過一些重原子核(如鈾-235、鈾-238、鈈-239等)的裂變釋放出的能量
B.核聚變能
由兩個或兩個以上氫原子核(如氫的同位素—氘和氚)結合成一個較重的原子核,同時發生質量虧損釋放出巨大能量的反應叫做核聚變反應,其釋放出的能量稱為核聚變能。
C.核衰變
核衰變是一種自然的慢得多的裂變形式,因其能量釋放緩慢而難以加以利用
核能的利用存在的主要問題:
(1)資源利用率低
(2)反應後產生的核廢料成為危害生物圈的潛在因素,其最終處理技術尚未完全解決
(3)反應堆的安全問題尚需不斷監控及改進
(4)核不擴散要求的約束,即核電站反應堆中生成的鈈-239受控制
(5)核電建設投資費用仍然比常規能源發電高,投資風險較大
海洋能
海洋能指蘊藏於海水中的各種可再生能源,包括潮汐能、波浪能、海流能、海水溫差能、海水鹽度差能等。這些能源都具有可再生性和不污染環境等優點,是一項亟待開發利用的具有戰略意義的新能源。
波浪發電,據科學家推算,地球上波浪蘊藏的電能高達90萬億度。目前,海上導航浮標和燈塔已經用上了波浪發電機發出的電來照明。大型波浪發電機組也已問世。我國在也對波浪發電進行研究和試驗,並製成了供航標燈使用的發電裝置。將來的世界,每一個海洋里都會有屬於我們中國的波能發電廠。波能將會為我國的電業作出很大貢獻。
潮汐發電,據世界動力會議估計,到2020年,全世界潮汐發電量將達到1000-3000億千瓦。世界上最大的潮汐發電站是法國北部英吉利海峽上的朗斯河口電站,發電能力24萬千瓦,已經工作了30多年。中國在浙江省建造了江廈潮汐電站,總容量達到3000千瓦。
風能
風能是太陽輻射下流動所形成的。風能與其他能源相比,具有明顯的優勢,它蘊藏量大,是水能的10倍,分布廣泛,永不枯竭,對交通不便、遠離主幹電網的島嶼及邊遠地區尤為重要。
風力發電,是當代人利用風能最常見的形式,自19世紀末,丹麥研製成風力發電機以來,人們認識到石油等能源會枯竭,才重視風能的發展,利用風來做其它的事情。
1977年,聯邦德國在著名的風谷--石勒蘇益格-荷爾斯泰因州的布隆坡特爾建造了一個世界上最大的發電風車。該風車高150米,每個漿葉長40米,重18噸,用玻璃鋼製成。到1994年,全世界的風力發電機裝機容量已達到300萬千瓦左右,每年發電約50億千瓦時。
生物質能
生物質能來源於生物質,也是太陽能以化學能形式貯存於生物中的一種能量形式,它直接或間接地來源於植物的光合作用。生物質能是貯存的太陽能,更是一種唯一可再生的碳源,可轉化成常規的固態、液態或氣態的燃料。地球上的生物質能資源較為豐富,而且是一種無害的能源。地球每年經光合作用產生的物質有1730億噸,其中蘊含的能量相當於全世界能源消耗總量的10-20倍,但目前的利用率不到3%。
生物質能利用現狀
2006年底全國已經建設農村戶用沼氣池1870萬口,生活污水凈化沼氣池14萬處,畜禽養殖場和工業廢水沼氣工程2,000多處,年產沼氣約90億立方米,為近8000萬農村人口提供了優質生活燃料。
中國已經開發出多種固定床和流化床氣化爐,以秸稈、木屑、稻殼、樹枝為原料生產燃氣。2006年用於木材和農副產品烘乾的有800多台,村鎮級秸稈氣化集中供氣系統近600處,年生產生物質燃氣2,000萬立方米。
地熱能
地球內部熱源可來自重力分異、潮汐摩擦、化學反應和放射性元素衰變釋放的能量等。放射性熱能是地球主要熱源。我國地熱資源豐富,分布廣泛,已有5500處地熱點,地熱田45個,地熱資源總量約320萬兆瓦。
氫能
在眾多新能源中,氫能以其重量輕、無污染、熱值高、應用面廣等獨特優點脫穎而出,將成為21世紀最理想的新能源。氫能可應用於航天航空、汽車的燃料,等高熱行業。
海洋滲透能
如果有兩種鹽溶液,一種溶液中鹽的濃度高,一種溶液的濃度低,那麼把兩種溶液放在一起並用一種滲透膜隔離後,會產生滲透壓,水會從濃度低的溶液流向濃度高的溶液。江河裡流動的是淡水,而海洋中存在的是鹹水,兩者也存在一定的濃度差。在江河的入海口,淡水的水壓比海水的水壓高,如果在入海口放置一個渦輪發電機,淡水和海水之間的滲透壓就可以推動渦輪機來發電。
海洋滲透能是一種十分環保的綠色能源,它既不產生垃圾,也沒有二氧化碳的排放,更不依賴天氣的狀況,可以說是取之不盡,用之不竭。而在鹽分濃度更大的水域里,滲透發電廠的發電效能會更好,比如地中海、死海、我國鹽城市的大鹽湖、美國的大鹽湖。當然發電廠附近必須有淡水的供給。據挪威能源集團的負責人巴德·米克爾森估計,利用海洋滲透能發電,全球范圍內年度發電量可以達到16000億度。
水能
水能是一種可再生能源,是清潔能源,是指水體的動能、勢能和壓力能等能量資源。廣義的水能資源包括河流水能、潮汐水能、波浪能、海流能等能量資源;狹義的水能資源指河流的水能資源。是常規能源,一次能源。水不僅可以直接被人類利用,它還是能量的載體。太陽能驅動地球上水循環,使之持續進行。地表水的流動是重要的一環,在落差大、流量大的地區,水能資源豐富。隨著礦物燃料的日漸減少,水能是非常重要且前景廣闊的替代資源。目前世界上水力發電還處於起步階段。河流、潮汐、波浪以及涌浪等水運動均可以用來發電。
可以利用電解水分子和光以及化學分解水分子的方式,來分解到可燃燒的氫氣,它可作為新的,多用途的能源來替代現有的礦物質能源。水分子的分解過程簡而易行,投資少見效快。這給水能的綜合利用帶來了廣泛的前景,在地球上,水是一種到處可見的液態物質。通過水的分解裝置,制備出氫燃料,可用於汽車,航天航空,熱力發電等工業和民用方面,在較大的程度上,緩解了人類對礦物質資源的過分依賴。
新能源的發展現狀和趨勢
部分可再生能源利用技術已經取得了長足的發展,並在世界各地形成了一定的規模。目前,生物質能、太陽能、風能以及水力發電、地熱能等的利用技術已經得到了應用。
國際能源署(IEA)對2000~2030年國際電力的需求進行了研究,研究表明,來自可再生能源的發電總量年平均增長速度將最快。IEA的研究認為,在未來30年內非水利的可再生能源發電將比其他任何燃料的發電都要增長得快,年增長速度近6%在2000~2030年間其總發電量將增加5倍,到2030年,它將提供世界總電力的4.4%,其中生物質能將占其中的80%。
目前可再生能源在一次能源中的比例總體上偏低,一方面是與不同國家的重視程度與政策有關,另一方面與可再生能源技術的成本偏高有關,尤其是技術含量較高的太陽能、生物質能、風能等據IEA的預測研究,在未來30年可再生能源發電的成本將大幅度下降,從而增加它的競爭力。可再生能源利用的成本與多種因素有關,因而成本預測的結果具有一定的不確定性。但這些預測結果表明了可再生能源利用技術成本將呈不斷下降的趨勢。
我國政府高度重視可再生能源的研究與開發。國家經貿委制定了新能源和可再生能源產業發展的「十五」規劃,並制定頒布了《中華人民共和國可再生能源法》,重點發展太陽能光熱利用、風力發電、生物質能高效利用和地熱能的利用。近年來在國家的大力扶持下,我國在風力發電、海洋能潮汐發電以及太陽能利用等領域已經取得了很大的進展。
新能源(或稱可再生能源更貼切)主要有:太陽能、風能、地熱能、生物質能等。生物質能在經過了幾十年的探索後,國內外許多專家都表示這種能源方式不能大力發展,它不但會搶奪人類賴以生存的土地資源,更將會導致社會不健康發展;地熱能的開發和空調的使用具有同樣特性,如大規模開發必將導致區域地面表層土壤環境遭到破壞,必將引起再一次生態環境變化;而風能和太陽能對於地球來講是取之不盡、用之不竭的健康能源,他們必將成為今後替代能源主流。
太陽能發電具有布置簡便以及維護方便等特點,應用面較廣,現在全球裝機總容量已經開始追趕傳統風力發電,在德國甚至接近全國發電總量的5%-8%,隨之而來的問題令我們意想不到,太陽能發電的時間局限性導致了對電網的沖擊,如何解決這一問題成為能源界的一大困惑。
風力發電在19世紀末就開始登上歷史的舞台,在一百多年的發展中,一直是新能源領域的獨孤求敗,由於它造價相對低廉,成了各個國家爭相發展的新能源首選,然而,隨著大型風電場的不斷增多,佔用的土地也日益擴大,產生的社會矛盾日益突出,如何解決這一難題,成了我們又一困惑。
早在2001年,MUCE就為了開拓穩定的海島通信電源而開展一項研究,經過六年多研究和實踐,終於將一種成熟的新型應用方式MUCE風光互補系統向社會推廣,這種系統採用了我國自主研製的新型垂直軸風力發電機(H型)和太陽能發電進行10:3地結合,形成了相對穩定的電力輸出。在建築上、野外、通信基站、路燈、海島均進行了實際應用,獲得了大量可靠的使用數據。這一系統的研究成果將為我國乃至世界的新能源發展帶來了新的動力。
新型垂直軸風力發電機(H型)突破了傳統的水平軸風力發電機啟動風速高、噪音大、抗風能力差、受風向影響等缺點,採取了完全不同的設計理論,採用了新型結構和材料,達到微風啟動、無噪音、抗12級以上台風、不受風向影響等性能,可大量用於別墅、多層及高層建築、路燈等中小型應用場合。以它為主建立的風光互補發電系統,具有電力輸出穩定、經濟性高、對環境影響小等優點,也解決了太陽能發展中對電網沖擊等影響。
隨著能源危機日益臨近,新能源已經成為今後世界上的主要能源之一。其中太陽能已經逐漸走入我們尋常的生活,風力發電偶爾可以看到或聽到,可是它們作為新能源如何在實際中去應用?新能源的發展究竟會是怎樣的格局?這些問題將是我們在今後很長時間里需要探索的。
新能源的環境意義和能源安全戰略意義
我國能源需求的急劇增長打破了我國長期以來自給自足的能源供應格局,自1993年起我國成為石油凈進口國,且石油進口量逐年增加,使得我國接入世界能源市場的競爭。由於我國化石能源尤其是石油和天然氣生產量的相對不足,未來我國能源供給對國際市場的依賴程度將越來越高。
國際貿易存在著很多的不確定因素,國際能源價格有可能隨著國際和平環境的改善而趨於穩定,但也有可能隨著國際局勢的動盪而波動。今後國際石油市場的不穩定以及油價波動都將嚴重影響我國的石油供給,對經濟社會造成很大的沖擊。大力發展可再生能源可相對減少我國能源需求中化石能源的比例和對進口能源的以來程度,提高我國能源、經濟安全。
此外,可再生能源與化石能源相比最直接的好處就是其環境污染少。
未來的幾種新能源
波能:即海洋波浪能。這是一種取之不盡,用之不竭的無污染可再生能源。據推測,地球上海洋波浪蘊藏的電能高達9×104TW。近年來,在各國的新能源開發計劃中,波能的利用已佔有一席之地。盡管波能發電成本較高,需要進一步完善,但目前的進展已表明了這種新能源潛在的商業價值。日本的一座海洋波能發電廠已運行8年,電廠的發電成本雖高於其它發電方式,但對於邊遠島嶼來說,可節省電力傳輸等投資費用。目前,美、英、印度等國家已建成幾十座波能發電站,且均運行良好。
可燃冰:這是一種甲烷與水結合在一起的固體化合物,它的外型與冰相似,故稱「可燃冰」。可燃冰在低溫高壓下呈穩定狀態,冰融化所釋放的可燃氣體相當於原來固體化合物體積的100倍。據測算,可燃冰的蘊藏量比地球上的煤、石油和天然氣的總和還多。
煤層氣:煤在形成過程中由於溫度及壓力增加,在產生變質作用的同時也釋放出可燃性氣體。從泥炭到褐煤,每噸煤產生68m3氣;從泥炭到肥煤,每噸煤產生130m3氣;從泥炭到無煙煤每噸煤產生400m3氣。科學家估計,地球上煤層氣可達2000Tm3。
微生物:世界上有不少國家盛產甘蔗、甜菜、木薯等,利用微生物發酵,可製成酒精,酒精具有燃燒完全、效率高、無污染等特點,用其稀釋汽油可得到「乙醇汽油」,而且製作酒精的原料豐富,成本低廉。據報道,巴西已改裝「乙醇汽油」或酒精為燃料的汽車達幾十萬輛,減輕了大氣污染。此外,利用微生物可製取氫氣,以開辟能源的新途徑。
第四代核能源:當今,世界科學家已研製出利用正反物質的核聚變,來製造出無任何污染的新型核能源。正反物質的原子在相遇的瞬間,灰飛煙滅,此時,會產生高當量的沖擊波以及光輻射能。這種強大的光輻射能可轉化為熱能,如果能夠控制正反物質的核反應強度,來作為人類的新型能源,那將是人類能源史上的一場偉大的能源革命。
Ⅵ 關於生物能源有哪些國際比較權威的雜志,還有美國微生
生物科學綜合類核心期刊表
1、生態學報
2、應用生態學報
3、生物多樣性
4、生物工程學報
5、遺傳
6、生物化學與生物物理進展
7、微生物學報
8、中國生物化學與分子生物學報
9、水生生物學報
10、中國生物工程雜志
11、中國科學.C 輯,生命科學
12、生態學雜志
13、微生物學通報
14、應用與環境生物學報
15、生物物理學報
16、古脊椎動物學報
17、古生物學報
18、微體古生物學報
19、生物數學學報
20、生物技術
21、生命的化學
22、實驗生物學報(改名為:分子細胞生物學報)
23、生物技術通報
24、生命科學
25、生物學通報
Ⅶ 哪些可以製成生物燃料
生物質能是由植物的光合作用固定於地球上的太陽能,最有可能成為21世紀主要的新能源之一。據估計,植物每年貯存的能量約相當於世界主要燃料消耗的10倍;而作為能源的利用量還不到其總量的l%。這些未加以利用的生物質,為完成自然界的碳循環,其絕大部分由自然腐解將能量和碳素釋放,回到自然界中。事實上,生物質能源是人類利用最早、最多、最直接的能源,至今,世界上仍有15億以上的人口以生物質作為生活能源。生物質燃燒是傳統的利用方式,不僅熱效率低下,而且勞動強度大,污染嚴重。通過生物質能轉換技術可以高效地利用生物質能源,生產各種清潔燃料,替代煤炭,石油和天然氣等燃料,生產電力。而減少對礦物能源的依賴,保護國家能源資源,減輕能源消費給環境造成的污染。專家認為,生物質能源將成為未來持續能源重要部分,到2015年,全球總能耗將有40%來自生物質能源。
1.2能源與環境
人類正面臨著發展與環境的雙重壓力。經濟社會的發展以能源為重要動力,經濟越發展,能源消耗多,尤其是化石燃料消費的增加,就有兩個突出問題擺在我們面前:一是造成環境污染日益嚴重,二是地球上現存的化石燃料總有一天要掘空。按消費量推算,世界石油資源在今後50年到80年間將最終消耗殆盡。到2059年,也就是世界上第一口油井開鑽二百周年之際,世界石油資源大概所剩無幾。另一方面,由於過度消費化石燃料,過快、過早地消耗了這些有限的資源,釋放大量的多餘能量和碳素,打破了自然界的能量和碳平衡,是造成臭氧層破壞,全球氣候變暖,酸雨等災難性後果的直接因素。這就是說,如果不發展出新的能源來取代化石常規能源在能源結構中的主導地位,在21世紀必將發生嚴重的、災難性的能源和環境危機,是人類在下一世紀所面臨的三大最可能發生的災難之一。
1.3國家安全
固然,發展生物質能源不是獲得新的能源的唯一途徑,人類可以採用高技術手段獲得核能源,甚至從外太空獲得能源,但其中的危害也是有目共睹的。首先,核能源的發展極可能給已經不安的世界帶來新的不穩定因素,甚至直接威脅到人類的生存環境;其次,各國或各集團在人類下世紀技術水平下所能到達的有限外太空區域內進行的能源開發,將不可避免地引發新的爭奪或爭端,其禍福不言自明。而生物質能源則不僅是最安全、最穩定的能源,而且通過一系列轉換技術,可以生產出不同品種的能源,如固化和炭化可以生產因體燃料,氣化可以生產氣體燃料,液化和植物油可以獲得液體燃料,如果需要還可以生產電力等等。目前,世界各國,尤其是發達國家,都在致力於開發高效、無污染的生物質能利用技術,保護本國的礦物能源資源,為實現國家經濟的可持續發展提供根本保障。
2.國外生物質能技術的發展狀況
生物質能源的開發利用早已引起世界各國政府和科學家的關注。有許多國家都制定了相應的開發研究計劃,在日本的陽光計劃、印度的綠色能源工程、美國的能源農場和巴西的酒精能源計劃等發展計劃。其它諸如丹麥、荷蘭、德國、法國、加拿大、芬蘭等國,多年來一直在進行各自的研究與開發,並形成了各具特色的生物質能源研究與開發體系,擁有各自的技術優勢。
2.1沼氣技術
主要為厭氧法處理禽畜糞便和高濃度有機廢水,是發展較早的生物質能利用技術。80年代以前,發展中國家主要發展沼氣池技術,以農作物秸稈和禽畜糞便為原料生產沼氣作為生活炊事燃料。如印度和中國的家用沼氣池;而發達國家則主要發展厭氧技術,處理禽畜糞便和高濃度有機廢水。目前,日本、丹麥、荷蘭、德國、法國、美國等發達國家均普遍採取厭氧法處理禽畜糞便,而象印度、菲律賓、泰國等發展中國家也建設了大中型沼氣工程處理禽畜糞便的應用示範工程。採用新的自循環厭氧技術。荷蘭IC公司已使啤酒廢水厭氧處理的產氣率達到10m3/m3.d的水平,從而大大節省了投資、運行成本和佔地面積。美國、英國、義大利等發達國家將沼氣技術主要用於處理垃圾,美國紐約斯塔藤垃圾處理站投資2000萬美元,採用濕法處理垃圾,日產26萬m3沼氣,用於發電、回收肥料,效益可觀,預計10年可收回全部投資。英國以垃圾為原料實現沼氣發電18MW,今後10年內還將投資1.5億英鎊,建造更多的垃圾沼氣發電廠。
2.2生物質熱裂解氣化
早在70年代,一些發達國家,如美國、日本、加拿大、歐共體諸國,就開始了以生物質熱裂解氣化技術研究與開發,到80年代,美國就有19家公司和研究機構從事生物質熱裂解氣化技術的研究與開發;加拿大12個大學的實驗室在開展生物質熱裂解氣化技術的研究;此外,菲律賓、馬來西亞、印度、印尼等發展明家也先生開展了這方面的研究。芬蘭坦佩雷電力公司開始在瑞典建立一座廢木材氣化發電廠,裝機容量為60MW,產熱65MW,1996年運行:瑞典能源中心取得世界銀行貸款,計劃在巴西建一座裝機容量為20-3OMW的發電廠,利用生物質氣化、聯合循環發電等先進技術處理當地豐富的蔗渣資源。
2.3生物質液體燃料
另一項令人關注的技術,因為生物質液體燃料,包括乙醇、植物油等,可以作為清潔燃料直接代替汽油等石油燃料。巴西是乙醇燃料開發應用最有特色的國家,70年代中期,為了擺脫對進口石油的過度依賴,實施了世界上規模最大的乙醇開發計劃,到1991年,乙醇產量達到130億升,在980萬輛汽車中,近400萬輛為純乙醇汽車,其餘大部分燃用20%的乙醇-汽油混合燃料,也就是說乙醇燃料已佔汽車燃料消費量的50%以上。1996年,美國可再生資源實驗室已研究開發出利用纖維素廢料生產酒精的技術,由美國哈斯科爾工業集團公司建立了一個1MW稻殼發電示範工程:年處理稻殼12,000噸,年發電量800萬度,年產酒精2,500噸,具有明顯的經濟效益。
2.4其它技術
此外,生物質壓縮技術可書固體農林廢棄物壓縮成型,製成可代替煤炭的壓塊燃料。如美國曾開發了生物質顆粒成型燃料:泰國、菲律賓和馬來西亞等第三世界國家發展了棒狀成型燃料。
3.我國的生物質能源
我國基本上是一個農業國家農村人口占總人口的70%以上,生物質一直是農村的主要能源之一,在國家能源構成中也佔有益要地位。
3.1生物質能資源
我國現有森林、草原和耕地面積41.4億公頃,理論上生物質資源理可達650億噸/年以上(在但第平方公里土地面積上,植物經過光合作用而產生的有機碳量,每年約為158噸)。以平均熱值為15,000千焦/公斤計算,摺合理論資源最為33億標准煤,相當於我國目前年總能耗的3倍以上.
實際上,目前可以作為能源利用的生物質主要包括秸稈、薪柴、禽畜糞便、生活垃圾和有機廢渣廢水等。據調查,目前我國秸稈資源量已超過7.2億噸,約3.6億噸標准煤,除約1.2億噸作為飼料、造紙、紡織和建材等用途外其餘6億噸可作為能源用途:薪柴的來源主要為林業採伐、育林修剪和薪炭林,一項調查表明:我國年均薪柴產量約為1.27億噸,摺合標准煤0.74億噸:禽畜糞便資源量約1.3億噸標准煤;城市垃圾量生產量約1.2億噸左右,並以每年8%-10%的速度增,據估算,我國可開發的生物質能資源總量約7億噸標准煤。
3.2生物質能源和利用
我國生物質的能源利用絕大部分用於農村生活能源,極少部分用於鄉鎮企業的工業生產:而利用方式長期來一直以直接燃燒為主,只是近年來才開始採用新技術利用生物質能源,但規模較小。普及程度較低,在國家,甚至農村的能源結構中佔有極小的比例。
生物質直接燃燒方式不僅熱效率低下,而且大量的煙塵和余灰的排放使人們的居住和生活環境日益惡化,嚴重損害了婦女、兒童的身心健康。此外,還對生態、社會和經濟造成極其不利的影響:
1.在必須使用生物質能源而利用方式不合理的情況下,必然對森林等自然資源進行不合理採伐,破壞了自然植被和生態平衡;
2.對於有機垃圾、有機廢水、有機廢渣、禽畜糞便以及部分農業廢棄物等資源沒有充分加以利用,不僅造成資源浪費,而且使其成為主要的有機污染源,除造成嚴重的大氣和水污染之外,還排放大量的溫室氣體,加劇了全球溫室效應;
3.同時,隨著經濟的迅速發展和人民生活水平的提高,能源短缺問題必將成為21世紀阻礙國家經濟的持續發展的重大問題,必須予以足夠的重視,並採取有效措施著力加以解決。
事實上,大力開發和利用生物質能源,對於緩解21世紀的能源、環境和生態問題具有重要意義,產生諸多利益;
4.減少污染,改善人民生活條件。不管是有機污水處理、城鎮垃圾能源的利用還是秸稈熱解利用中一個重要的共同點解決環境污染問題,這也是大部分生物質利用的首要目標。
5.解決農村能源供應問題,提高農民生活水平。
我國農村能源供應緊張,而生物質源豐富,所以可利開展利用生物質能,可以改善農村的能量供應。提高他們的生活水平。
6.改善能源結構,減輕對對環境的壓力。我國可開發的生物資源達7億噸,如果能充分開發,可以在我國的能源消費中占重要的地方,這對改善我國能源結構,減少我國對石化燃料的依賴,進而減少我國CO2和SO2等污染物的排放,最終緩解能源消耗給環境造成的壓力有重要的意義。
3.3市場需求
可以預計,隨著國民經濟的發展和人民生活水平的提高,生物質能利用技術和裝置的市場前景將會越來越廣闊。主要依據:
1.目前,絕大部分農作物秸稈因得不到有效利用而就地焚燒於農田,不僅浪費了大量的能源,而成了嚴重的環境污染,給社會生活和經濟發展造成了一定程度的負面影響。如發生在成都雙流機場和首都機場的煙塵事件。逐漸富裕起來的農民,隨著生活水平的提高,迫切改變原來直接燃用秸稈薪柴煙薰火燎的炊事取暖局面,以生物質可燃氣作為他們的生活能源,就會改善其衛生環境,提高生活質量,減輕勞動強度。
2.眾多糧食、木材、茶葉、果類等加工廠,每天都有大量的谷殼、鋸末、木屑、果殼等廢棄物產出堆放,利用生物質氣化技術將其轉換成可燃氣,生產出優質能源,變廢為寶,可謂一舉兩得。
3.禽畜糞便既是極為有害大環境污染源泉又是重要的生物質能資源,隨著大型畜牧場的不斷建成和發展,所產生的環境污染也日趨嚴重。應用厭氧技術處理禽畜糞便更具有能源與環境雙重意義。
4.隨著我國社會經濟的迅速發展,城市人口的增多和居民生活的改善,城市的垃圾處理問題便顯得日益突出。我國的以北京為例,1995年,年垃圾產量均已突破400萬噸,1996年北京的垃圾量則達485萬噸。採用厭氧技術處理有機垃圾,不僅可獲得能源,而且達到低費用治理污染的目的。
5.我國的邊遠地區,生物質資源豐富,多屬於缺電、少電地區,可將生物質氣化發電,或供熱可自產自用。
6.事買上,生物質能源技術之所以具有廣闊的市場前景,其優勢在於開發利用生物質能源不僅可以獲得取之不盡的能源,而且具有保護環境,節省資源的功能。
3.4我國生物質能技術發展現狀與問題
我國政府及有關部門對生物質能源利用極為重視,國家幾位主要領導人曾多次批示和指示加強農作物秸稈的能源利用。國家科委已連續在三個國家五年計劃中將生物質能技術的研究與應用列為重點研究項目,涌現出一大批優秀的科研成果和成功的應用範例,如產用沼氣池、禽畜糞便沼氣技術、生物質氣化發電和集中供氣、生物壓塊燃料等,取得了可觀的社會效益和經濟效益。同時,我國已形成一支高水平的科研隊伍,包括國內有名的科研院所和大專院校:擁有一批熱心從事生物質熱裂解氣化技術研究與開發的著名專家學者。
a.沼氣技術是我國發展最早、曾晉遍推廠的生物質能源利用技術。70年代,我國為解決農村能源短缺的問題,曾大力開發和推廣戶用沼氣地技術,全國已建成525萬戶用沼氣池。在最近的連續三個五年計劃中,國家都將發展新的沼氣技術列為重點科技攻關項目,計劃實施了一大批沼氣及其利用的研究項目和示範工程。至今,我國已建設了大中型沼氣池3萬多個,總容積超過137萬m3,年產沼氣5,500萬m3,僅100m3以上規模的沼氣工程就達630多處,其中集中供氣站583處,用戶8.3萬戶,年均用氣量431m3,主要用於處理禽畜糞便和有機廢水。這些工程都取得了一定程度的環境效益和社會效益,對發展當地經濟和我國厭氧技術起到了積極作用。在「九五」計劃中,應用於處理高濃度有機廢水和城市垃圾的高效厭氧技術被列為科技攻關重點項目,分別由中科院成都生物研究所和杭州能源環境研究所承擔實施,現已取得預期的進展。
我國厭氧技術及工程中存在的主要問題:相關技術研究少、輔助設備配套性差、自動化程度低、非標設備加工粗糙、工程造價高、開放式前後處理的二次污染嚴重等。
b.我國的生物質氣化技術近年有了長足的發展,氣化爐的形式從傳統上吸式、下吸式到最先進的流化床、快速流化床和雙床系統等,在應用上除了傳統的供熱之外,最主要突破是農村家庭供氣和氣化發電上。「八五」期間,國家科委安排了「生物質熱解氣化及熱利用技術」的科技攻關專題,取得了相當成果:採用氧氣氣化工藝,研製成功生物質中熱值氣化裝置;以下吸式流化床工藝,研製成功l00戶生物質氣化集中供氣系統與裝置:以下吸式固定床工藝,研製成功食品與經濟作物生物質氣化烘乾係統與裝置;以流化床干餾工藝,研製成功1000戶生物質氣化 集中供氣系統與裝置。「九五」期間,國家科委安排了「生物質熱解氣化及相關技術」的科技攻關專題,重點研究開發1MW大型生物質氣化發電技術和農村秸稈氣化集中供氣技術。目前全國已建成農村氣化站近200多個,谷殼氣化發電100多台套,氣化利用技術的影響正在逐漸擴大。
c.「八五」期間,我國開始了利用纖維素廢棄物製取乙醇燃料技術的探索與研究,主要研究纖維素廢棄物的稀酸水解及其發酵技術,並在「九五」期間進入中間試驗階段。我國已對植物油和生物質裂解油等代用燃料進行了初步研究:如植物油理化特性、酯化改性工藝和柴油機燃燒性能等方面進行了初步試驗研究。「九五」期間,開展了野生油料植物分類調查及育種基地的建設。我國的生物質液化也有一定研究,但技術比較落後,主要開展高壓液化和熱解液化方面的研究。
d.此外,在「八五」期間,我國還重點對生物質壓縮成型技術進行了科技攻關,引進國外先進機型,經消化、吸收,研製出各種類型的適合我國國情的生物質壓縮成型機,用以生產棒狀、塊狀或顆粒生物質成型燃料。我國的生物質螺旋成型機螺桿使用壽命達500小時以上,屬國際先進水平。
雖然我國在生物質能源開發方面取得了巨大成績,技術水平卻與發達國家相比仍存在一定差距,如:
a.新技術開發不力,利用技術單一。我國早期的生物質利用主要集中在沼氣利用上,近年逐漸重視熱解氣化技術的開發應用,也取得了一定突破,但其他技術開展卻非常緩慢,包括生產酒精、熱解液化、直接燃燒的工業技術和速生林的培育等,都沒有突破性的進展。
b.由於資源分散,收集手段落後,我國的生物質能利用工程的規模很小;為降低投資,大多數工程採用簡單工藝和簡陋設備,設備利用率低,轉換效率低下。所以,生物質能項目的投資回報率低,運行成本高,難以形成規模效益,不能發揮其應有的、重大的能源作用。
c.相對科研內容來說,投入過少,使得研究的技術含量低,多為低水平重復研究,最終未能解決一些關鍵技術,如:厭氧消化產氣率低,設備與管理自動化程度較差;氣化利用中焦油問題沒有徹底解決,給長期應用帶來嚴重問題;沼氣發電與氣化發電效率較低,相應的二次污染問題沒徹底解決。導致許多工程系統常處於維修或故障的狀態,從而降低了系統運行強度和效率。
此外,在我國現實的社會經濟環境中,還存在一些消極因素制約或阻礙著生物質能利用技術的發展、推廣和應用,主要表現為:
a.在現行能源價格條件下,生物質能源產品缺乏市場竟爭能力,投資回報率低挫傷了投資者的投資積極性,而銷售價格高又挫傷了消費者的積極性。
b.技術標准未規范,市場管理混亂。在秸桿氣化供氣與沼氣工程開發上,由於未有合適的技術標准和嚴格的技術監督,很多未具備技術力量的單位和個人參與了沼氣工程承包和秸桿氣化供氣設備的生產,引起項目技術不過關,達不到預期目標,甚至帶來安全問題,這給今後開展生物質利用工作帶來很大的負面影響。
c.目前,有關扶持生物質能源發展的政策尚缺乏可操作性,各級政府應盡快制定出相關政策,如價格補貼和發電上網等特殊優惠政策。
d.民眾對於生物質能源缺乏足夠認識,應加強有關常識的宣傳和普及工作。
e.政府應對生物質能源的戰略地位予以足夠重視,開發生物質能源是一項系統工程,應視作實現可持續發展的基本建設工程。
4.發展方向與對策
4.1發展方向
我國的生物質能資源豐富,價格便宜,而經濟環境和發展水平對生物質技術的發展處於比較有利的階段。根據這些特點,我國生物質的發展既要學習國外先進經驗,又要強調自己的特色,所以,今後的發展方向應朝著以下幾方面:
a.進一步充分發揮生物質能作為農村補充能源的作用,為農村提供清潔的能源,改善農村生活環境及提高人民生活條件。這包括沼氣利用、秸桿供氣和小型氣化發電等實用技術。
b.加強生物質工業化應用,提高生物質能利用的比重,提高生物質能在能源領域的地位。這樣才能從根本上擴大生物質能的影響,為生物質能今後的大規模應用創造條件,也是今後生物質能能否成為重要的替代能源的關鍵。
c.研究生物質向高品位能源產品轉化的技術,提高生物質能的利用價值。這是重要的技術儲備,是未來多途徑利用生物質的基礎,也是今後提高生物質能作用和地位的關鍵。
d.同時,利用山地、荒地和沙漠,發展新的生物質能資源,研究、培育、開發速生、高產的植物品種,在目前條件允許的地區發展能源農場、林場,建立生物質能源基地,提供規模化的木質或植物油等能源資源。
4.2對策
根據上面的主要發展方向,今後我國生物質利用技術能否得到迅速發展,主要取決於以下幾個方面:
a.在產業化方面:加強生物質利用技術的商品化工作,制定嚴格的技術標准,加強技術監督和市場管理,規范市場活動,為生物質技術的推廣創造良好的市場環境。
b.在工業化生產與規模化應用方面:加強生物質技術與工業生產的聯系,在示範應用中解決關鍵的技術在技術研究方面:既重點解決推廣應用中出現的技術難題,在生產實踐中提高並考驗生物質能技術的可靠性和經濟性,為大規模使用生物質創造條件。
c.在技術研究方面:既重點解決推廣應用中出現的技術難題,如焦油處理,寒冷地區的沼氣技術等,又要同時開展生物質利用新技術的探索,如生物質制油,生物質制氧等先進技術的研究。
d.制定一項生物質能源國家發展計劃,引進新技術、新工藝,進行示範、開發和推廣,充分而合理地利用生物質能資源。在21世紀,逐步以優質生物質能源產品(固體燃料、液體燃料、可燃氣、由、執等形式)取代部分礦物燃料,解決我國能源短缺和環境污染等問題。
4.3優先領域
.秸稈能源利用
.有機垃圾處理及能源化
.工業有機廢渣與廢水處理及能源化
.生物質液體燃料
4.4重大關鍵技術
.高效生物質氣化發電技術
.有機垃圾IGCC發電技術
.高效厭氧處理及沼氣回收技術
.纖維素製取酒精技術
.生物質裂解液化技術
.能源植物培育及利用技術
5.結語
生物質能源在未來世紀將成為可持續能源重要部分。我國幅員遼闊,但化石能源資源有限,生物質資源豐富,發展生物質能源具有重要的戰略意義和現實意義。採用高新技術將秸稈、禽畜糞便和有機廢水等生物質轉化為高品位能源,開發生物質能源將涉及農村發展、能源開發、環境保護、資源保護、國家安全和生態平衡等諸多利益。希望得到社會各界、各級政府、專家學者的廣泛關注與支持,為我國的生物質能源事業創造有益的發展環境。
Ⅷ 什麼是生物能源,生物能源能不能替代石油等不可再生能源
地球上每年植物光合作用固定的碳達2×1011t,含能量達3×1021J,因此每年通過光合作用貯存在植物的枝、莖、葉中的太陽能,相當於全世界每年耗能量的10倍。生物質遍布世界各地,其蘊藏量極大,僅地球上的植物,每年生產量就像當於現階段人類消耗礦物能的20倍,或相當於世界現有人口食物能量的160倍。雖然不同國家單位面積生物質的產量差異很大,但地球上每個國家都有某種形式的生物質,生物質能是熱能的來源,為人類提供了基本燃料。
開發「綠色能源」已成為當今世界上工業化國家開源節流、化害為利和保護環境的重要手段。至少有14個工業化國家在開發「綠色能源」方面取得了良好成績,其中有些國家通過實施「綠色能源」政策,在相當大程度上緩解了本國能源不足的矛盾,而且顯著改善了環境。
我國擁有豐富的生物質能資源,我國理論生物質能資源50億噸左右。現階段可供利用開發的資源主要為生物質廢棄物,包括農作物秸稈、薪柴、禽畜糞便、工業有機廢棄物和城市固體有機垃圾等。然而,由於農業、林業、工業及生活方面的生物質資源狀況非常復雜,缺乏相關的統計資料和數據,以及各類生物質能資源間以各種復雜的方式相互影響,因此,生物質的消耗量是最難確定或估計的。
近年來,我國在生物質能利用領域取得了重大進展,特別是沼氣技術,每年所生產能源己達115萬噸油當量,占農村能源的0.24%;由節柴炕灶每年所節約的能量己達52.5萬噸油當量。
我國政府及有關部門對生物質能源利用也極為重視,己連續在四個國家五年計劃將生物質能利用技術的研究與應用列為重點科技攻關項目,開展了生物質能利用技術的研究與開發,如戶用沼氣池、節柴炕灶、薪炭林、大中型沼氣工程、生物質壓塊成型、氣化與氣化發電、生物質液體燃料等,取得了多項優秀成果。政策方面,2005年2月28日,第十屆全國人民代表大會常務委員會第十四次會議通過了《可再生能源法》,2006年1月1日起已經正式實施,並於2006年陸續出台了相應的配套措施。這表明我國政府已在法律上明確了可再生能源包括生物質能在現代能源中的地位,並在政策上給予了巨大優惠支持,因此,我國生物質能發展前景和投資前景極為廣闊。
<生物能源>(中國投資咨詢網)
第一章 生物質能概述
1.1 生物質能的概念與形態
1.1.1 生物質能的含義
1.1.2 生物質能的種類與形態
1.1.3 生物質能的優缺點
1.2 生物質能的性質與用途
1.2.1 生物質的重要性
1.2.2 與常規能源的相似性及可獲得性
1.2.3 生物質能源的可再生性及潔凈性
1.3 生物能源的開發范圍
1.3.1 植物酒精成為綠色石油
1.3.2 利用甲醇的植物發電
1.3.3 生產石油的草木
1.3.4 藻類生物能源的利用
1.3.5 海中藻菌能源開發
1.3.6 薪柴與「能源林」推廣
1.3.7 變垃圾為寶的沼氣池
1.3.8 人體生物發電的開發利用
1.3.9 細菌采礦技術的研究
第二章 全球生物質能的開發和利用
2.1 國際生物質能開發利用綜述
2.1.1 全球生物質能開發與利用回顧
2.1.2 歐洲各國生物能源研究機構簡介
2.1.3 歐盟國家生物質能發展政策分析
2.2 美國
2.2.1 美國生物質能研發概況
2.2.2 美國生物質能的研究領域
2.2.3 美國將大力開發燃料乙醇和生物燃油
2.3 德國
2.3.1 德國生物質能的研發和應用狀況
2.3.2 德國積極發展生物質能替代石油
2.3.3 德國生物柴油生產和銷售狀況
2.4 日本
2.4.1 日本生物質能的研究計劃
2.4.2 日本生物質能發電應用狀況
2.4.3 日本生物質能源綜合戰略分析
2.5 其它國家
2.5.1 英國大力發展生物質能產業
2.5.2 瑞典生物質能發展概述
2.5.3 巴西大力開發生物質能源
2.5.4 農業為法國發展生物燃料奠定基礎
2.5.5 印度生物質能開發與利用概況
2.5.6 泰國積極拓展生物能源領域
第三章 中國生物質能開發和利用狀況
3.1 中國生物質能發展概述
3.1.1 我國生物質能的資源概況
3.1.2 解析我國發展生物質能的動因
3.1.3 我國對生物質能的應用狀況
3.1.4 我國生物質能發展的示範工程
3.1.5 我國發展生物質能的主要成就
3.2 全國各地生物質能利用情況
3.2.1 四川省生物質能資源及利用狀況
3.2.2 內蒙古生物質能源發展狀況及開發建議
3.2.3 湖北省生物質能集約化應用方向與途徑
3.2.4 上海生物質能發展環境與建議
3.3 開發與利用生物質能存在的問題與對策
3.3.1 生物質能利用尚存三大瓶頸
3.3.2 消極因素阻礙生物質能的發展
3.3.3 生物質能開發與國外相比存在的差距
3.3.4 我國發展生物質能的主要策略
3.3.5 未來生物質能發展的基本方向
第四章 中國農村生物質能的開發與利用
4.1 農村生物質能的資源狀況
4.1.1 我國農村農作物秸稈資源豐富
4.1.2 農村畜禽養殖場糞便資源狀況
4.1.3 林業及其加工廢棄物資源狀況
4.2 農村生物質能源利用狀況
4.2.1 我國農村生物質能利用狀況回顧
4.2.2 發展農村生物質能對能源農業的意義
4.2.3 我國農村生物質能開發的主要策略
4.2.4 未來農村生物質能發展戰略目標
4.3 主要地區農村生物能源利用狀況
4.3.1 江蘇農村的生物質能利用狀況
4.3.2 北京加速農村生物質能源推廣
4.3.3 吉林生物質能源項目的使用概況
第五章 生物質能開發與應用技術分析
5.1 生物質能技術的相關介紹
5.1.1 生物質液化技術
5.1.2 生物質氣化技術
5.1.3 生物質發電技術
5.1.4 生物質熱解綜合技術
5.1.5 生物質固化成型技術
5.2 世界生物質能開發技術分析
5.2.1 國外生物質能技術的發展狀況
5.2.2 世界種植「石油」作物技術概況
5.2.3 歐洲生物質能開發與利用技術分析
5.3 中國生物質能技術的發展
5.3.1 我國生物質能技術的主要類別
5.3.2 中國生物質熱解液化技術概要
5.3.3 我國生物質能技術存在的主要問題
5.3.4 發展我國生物質能利用技術的策略
5.3.5 我國生物質能利用技術開發建議
第六章 生物柴油
6.1 生物柴油簡介
6.1.1 生物柴油的概念
6.1.2 生物柴油的特性
6.1.3 生物柴油的生產工藝
6.1.4 生物柴油的優勢與效益
6.2 生物柴油生產的原料來源
6.2.1 油菜成為生物柴油的首選原料
6.2.2 用廉價廢舊原料生產生物柴油
6.2.3 花生油下腳廢料開發出生物柴油
6.2.4 潲水油可以成為生物柴油原料
6.3 國際生物柴油行業分析
6.3.1 世界生物柴油發展迅速的原因
6.3.2 歐盟生物柴油行業發展現狀
6.3.3 美國生物柴油行業發展狀況
6.3.4 巴西將提前實現生物柴油發展目標
6.3.5 2007年德國將是生物柴油凈出口國
6.3.6 2007年馬來西亞將提高生物柴油產量
6.4 我國生物柴油產業發展概述
6.4.1 發展生物柴油的必要性和可行性
6.4.2 我國生物柴油產業尚在初級階段
6.4.3 我國生物柴油技術發展的成就
6.5 2005-2007年生物柴油產業發展分析
6.5.1 2005年「生物柴油」植物栽培獲突破
6.5.2 2006年生物柴油產業迎來投資高潮
6.5.3 2007年環保生物柴油試產成功
6.6 生物柴油發展中的問題與對策
6.6.1 我國生物柴油商業化應用的障礙
6.6.2 突破生物柴油產業發展瓶頸的對策
6.6.3 價格和原料供應問題的解決途徑
6.6.4 解析生物柴油發展中的法律欠缺
6.6.5 推動中國生物柴油發展的政策建議
6.7 生物柴油產業發展前景分析
6.7.1 生物柴油在國內的商業化未來
6.7.2 我國生物柴油的市場前景廣闊
第七章 燃料乙醇
7.1 燃料乙醇簡介
7.1.1 燃料乙醇含義
7.1.2 燃料乙醇的重要作用
7.1.3 變性燃料乙醇簡介
7.1.4 變性燃料乙醇國家標准
7.2 燃料乙醇生產原料分析
7.2.1 甘蔗是理想的燃料酒精作物
7.2.2 玉米生產燃料乙醇潛力巨大
7.2.3 不同類型原料的綜合比選
7.2.4 發展燃料乙醇原料產業的建議
7.3 國際燃料乙醇產業分析
7.3.1 世界燃料乙醇工業發展回顧
7.3.2 歐洲國家推廣應用燃料乙醇概況
7.3.3 乙醇燃料在美國的應用推廣過程
7.3.4 巴西政府大力發展燃料乙醇工業
7.3.5 全球燃料乙醇替代汽油展望
7.4 中國燃料乙醇產業分析
7.4.1 中國燃料乙醇的生產與應用回顧
7.4.2 中國燃料乙醇推廣的實踐經驗
7.4.3 我國發展燃料乙醇工業的基本原則
7.4.4 燃料乙醇企業面臨成本高的難題
7.4.5 發展國內燃料乙醇工業的若干建議
7.5 中國燃料乙醇市場分析
7.5.1 我國燃料乙醇市場簡況
7.5.2 燃料乙醇定價與經濟性分析
7.5.3 燃料乙醇需求增加使玉米供應出現缺口
7.5.4 推廣應用燃料乙醇的經驗策略
7.6 燃料乙醇的發展前景和趨勢
7.6.1 未來燃料乙醇工業發展前景展望
7.6.2 我國燃料乙醇工業市場前景廣闊
7.6.3 木薯製造燃料乙醇的市場前景廣闊
第八章 生物質能發電
8.1 國際生物質能發電情況
8.1.1 世界生物質能發電技術日趨成熟
8.1.2 北美地區生物質能發電發展概況
8.1.3 歐盟地區生物質能發電發展分析
8.1.4 生物質能發電未來的前景預測
8.2 中國生物質能發電產業分析
8.2.1 加快生物質發電的必要性和可行性
8.2.2 內地主要生物質發電項目建設情況
8.2.3 發展生物質發電對新農村建設意義重大
8.3 沼氣發電
8.3.1 發展我國農村沼氣發電的意義重大
8.3.2 我國農村沼氣發電的應用技術分析
8.3.3 沼氣綜合利用發電的經濟效益分析
8.3.4 沼氣發電商業化發展的障礙與對策
8.3.5 未來我國農村沼氣發電的發展前景
8.4 2004-2006年沼氣發電項目運行狀況
8.4.1 2004年無錫市的沼氣發電電量大增
8.4.2 2005年浙江省最大的沼氣發電項目成功運行
8.4.3 2006年四川首個沼氣發電站在雙流建成
8.4.4 2006年徐州建成首家沼氣發電工程
8.4.5 2006年蘭州大型沼氣發電機組試車成功
8.5 秸稈發電
8.5.1 中國秸稈發電發展概況
8.5.2 中國應著力推進秸稈發電事業
8.5.3 國內秸稈發電的技術分析
8.6 生物質氣化發電
8.6.1 發展生物質氣化發電技術的意義
8.6.2 中國生物質氣化發電技術的現狀
8.6.3 中小型氣化發電技術的現狀和問題
8.6.4 生物質氣化發電技術的經濟性分析
8.6.5 生物質氣化發電技術應用市場分析
8.6.6 生物質氣化發電技術的發展策略
8.6.7 國家對生物質氣化發電的政策支持
第九章 生物質能產業投資分析
9.1 投資生物質能產業的政策環境
9.1.1 我國開發生物質能的有利政策
9.1.2 發展生物質能的財政政策解讀
9.1.3 農村能源發展的政策保障與戰略思考
9.1.4 我國燃料乙醇工業的相關政策剖析
9.2 投資機會與投資成本分析
9.2.1 中國優先發展的生物能源項目
9.2.2 燃料乙醇行業已成投資熱點
9.2.3 國內推廣生物柴油的時機成熟
9.2.4 投資生物柴油的經濟成本分析
9.3 投資生物質能產業的若干建議
9.3.1 生物質能利用應考慮的幾個因素
9.3.2 投資生物質能發電項目亟需謹慎
9.3.3 開發燃料乙醇應關注三大問題
第十章 生物質能利用的發展前景
10.1 全球生物質能的發展前景分析
10.1.1 未來全球將面臨能源危機的挑戰
10.1.2 全球生物能源利用潛力預測
10.1.3 全球生物質能的發展前景廣闊
10.2 中國生物質能的利用前景
10.2.1 我國開發利用生物質能具有廣闊前景
10.2.2 我國生物質能資源潛力巨大
10.2.3 中國林業發展生物質能源潛力巨大
10.3 生物質能利用技術的未來展望
10.3.1 生物質能源技術市場前景廣闊
10.3.2 未來生物質能應用技術的發展方向
10.3.3 我國生物質能利用技術發展目標
Ⅸ 秸稈生物質能源的應用現狀與前景
秸稈生物質通過液化或固化等方式製造成燃料可直接供熱,或是製造成秸稈清潔煤炭等等。秸稈煤炭是一
種新型的生物質再生能源,環保清潔,遠遠低於原煤的成本和市場價格,應用范圍極為廣泛,可以代替木
柴、原煤、液化氣,廣泛用於生活爐灶、取暖爐、熱水鍋爐、工業鍋爐等。但是如何將生物質燃料像煤、
煤氣和天然氣一樣在老百姓的生活中普及,還需大力宣傳和推廣。
2.3交通能源
秸稈的主要成分是碳、氫、氧等元素,有機成分以纖維素、半纖維素為主,其次為木質素、蛋白質、脂肪
、灰分等,用秸稈轉化的生物燃料如生物乙醇和生物柴油作為交通能源,同石油、天然氣和煤等化石燃料
相比,最大特點是可再生性和對環境更友好。國際上生物交通能源技術相對成熟,主要路線是:穀物、秸
稈、其它植物等發酵生產乙醇-車用油、乙烯、無毒溶劑及上百種化工、原材料產品等;我國秸稈交通能源
技術研究雖然起步較晚,但日趨成熟,有些正形成小型規模和商品化。
3秸稈生物質能源化應用技術
秸稈生物質能源化應用技術主要包括秸稈沼氣(生物氣化)、秸稈固化成型燃料、秸稈熱解氣化、直燃發電
和秸稈干餾等方式。
Ⅹ 生物質的應用是什麼
生物質的應用包括大量至關重要的而且常常可以反映政策的內容,包括能源、環境、農業、全球貿易、交通運輸和土地使用規劃等,這些內容極為復雜。生物質是極為豐富且有多種用途的可再生資源,目前佔全球初級能源供應12%的份額,也佔到了歐洲共同體初級能源供應的4%。各種假設與預測表明,2030—2050年,生物質在全球能源需求中將會達到15%~35%的比重。到2030年,歐洲共同體的初級生物能源潛力總量將達2.5億~2.9億噸石油當量,而在2003年,僅為0.69億噸石油當量。
生物質燃料生產可能的途徑
然而,如果沒有任何補貼,生物質往往會無法與今天廣泛使用的用於發電或汽車燃料的化石燃料競爭。但是,這種缺憾可能會變得並不重要,在能源供給中,生物質將會具有更大的潛能。
用生物質作為一種能量資源是自然碳循環的一部分,因為燃燒時釋放到大氣層中的二氧化碳量基本上等於在光合作用光合作用是指在生物體內從光能轉化為化學能的一系列酶—催化劑過程。它的初始物質是二氧化碳和水,能量來源是光(電磁、輻射);而終端產物是氧(含有能量的)和碳水化合物,如蔗糖、葡萄糖、澱粉。這一過程是可以論證的最重要的生物化學途徑,因為地球上所有的生物都直接或間接地依靠這種作用。這是一種發生在較高等植物、藻類以及細菌(如藍藻)體內的一種復雜的過程。中被生物質所吸收的量。培育和轉化生物質給料(指供送入機器或加工廠的原料)的非能源密集型加工技術具有一種二氧化碳平衡功能。生物質可以提供的能源形式包括熱量、電力、氣體的,液體的或固體的加熱燃料和汽車燃料。三種主要的生物質能轉化加工技術為:(1)熱化學技術,如燃燒、熱解和汽化;(2)生物技術,如發酵和酶的水解;(3)油脂化學技術,如植物油和動物脂肪的煉制。
從廣義上講,生物燃料(可以培育或栽培的稱為「農業燃料」)定義為由源自死亡不久的生物體(絕大部分為植物)構成的固體、液體或氣體燃料。據此,可以與化石燃料區別開來,後者源自死亡已久的生物質。從理論上講,生物燃料可以產自任何(生物學的)碳源。最常見的植物都是具有能夠俘獲太陽能的光合作用的植物。許多不同的植物和源自植物的物質都可被用於生物燃料的製造。生物燃料的應用已經遍布全球,在歐洲、亞洲和美洲的生物燃料工業正在蓬勃發展,最常見的用途是車用液體燃料。所以,可再生的生物燃料的使用可以減少人們對石油的依賴性並提高能源的安全性。生物燃料的生產與使用的各種當代的要素有緩解石油價格的壓力、食品與燃料之爭、碳排放的水平、可持續性生物燃料生產、森林的濫伐與土壤流失的影響、人權方面的內容、減少貧困的潛力、生物燃料價格、能源的平衡與效率以及集中於分散生產的模式等。
最大的技術挑戰之一,就是研發一些用特殊手段將生物質能轉化為可供車用的液態燃料的方式。為達此目的,有兩種最常用的戰略:(1)增加糖類作物(甘蔗、甜菜、甜高粱等)或澱粉(玉米、穀物等)的產量,然後將其做發酵處理,生成乙醇(酒精);(2)增加那些能夠(自然地)生產油脂的植物,如油棕櫚樹、大豆或藻類的產量。當這些油料被加熱時,它們的黏度就會下降,這樣就可以在柴油發動機內進行直接燃燒,也可以將這些油經過化學處理後產生燃料(如生物柴油);木材和木材的副產品可以被轉化為生物燃料,如木(煤)氣、甲醇或乙醇燃料。
從2006年的石油價格來看,一些生物燃料已經具備了競爭力(參見下表),如果石油價格長期保持高位的話,研究與開發工作將會使更多的生物燃料投入使用。隨著人們對農作物關注的增加,有三種植物都可供利用:草、樹木和藻類。草和樹生長在乾燥的土地上,但加工處理工藝比較復雜。目前的觀點是將樹的所有生物質(特別是由樹的細胞壁構成的纖維素)轉化為燃料。
與油類和油類產品價格相比的生物燃料價格
發展中國家的生物燃料
許多發展中國家都在建立自己的生物燃料工業。這些國家擁有極為豐富的生物質資源,而隨著人們對生物質和生物燃料需求量的增加,生物質正在變得更有價值。世界各地的生物燃料開發的進度不盡相同,印度和中國等國正在大力發展生物乙醇和生物柴油技術。印度正在擴大麻風樹屬的種植,這是一種可用於生產生物柴油的產油作物。印度的糖酒精研究的目標是在車用燃料中達到5%的份額。中國是一個重要的生物乙醇生產國。開發生物燃料的成本也是非常高昂的。在發展中國家,生物質能可以為生活在農村的人們提供加熱和做飯的燃料。牲畜的糞便和農作物的殘余物常常被用作燃料。國際能源署的數據表明,在發展中國家初始能源中約30%是由生物質提供的。全球20多億人用生物燃料作為他們的初始能源來源,用於戶內做飯的生物燃料的使用往往會產生健康問題和污染。據國際能源署2006年的《世界能源展望》,生物質燃料使用時不通風現象已經造成了全球130萬人的死亡。解決這一問題的方法是改進爐灶和使用替代燃料。然而,燃料具有對生物(尤其是人)的傷害性,而可替代燃料則又過於昂貴。從1980年或更早以來,人們就開始設計生產出極低成本、較高燃燒效率且低污染的生物質能灶具。
「生物燃料的生產一直頗受質疑,因為生物燃料的生產肯定會提高農作物的價格,進而從整體上影響食品安全!」
問題在於教育與分配的缺乏、腐敗橫生以及外國的投資過少等。在沒有幫助或資助(如小額信貸)的情況下,發展中國家的人們往往不能解決這些問題。一些組織,如中間技術開發集團(Intermediate Technology Development Group)的工作就是為那些無法得到生物燃料的人們建立使用這種燃料和替代燃料的設施。
目前生物燃料生產與使用的問題。人們認為生物燃料的優點在於:減少溫室氣體的排放,減少化石燃料的使用,增加國家能源的安全性,加快了農村的發展並為未來提供可持續性能源。生物燃料的局限性在於:生物燃料生產的原材料必須迅速得到補充,而且必須對生物燃料的生產過程進行創新性設計和不斷補充,這樣方能以最低的價格獲得最多的燃料,而且能夠獲得最大的環境效益。廣義而言,第一代生物燃料的生產加工僅能為我們提供極少的份額,造成這種現象的原因如下所述。第二代加工技術能夠為我們提供更多的生物燃料和更好的環境效益,但其加工技術的主要障礙是投資成本:預計建立第二代生物燃料生產加工的成本高達5億歐元。目前,關於生物燃料的有利與不利之間的爭議時常出現。政治學家和大型企業正在推動以農作物為原料的乙醇生物燃料的進程,並以此為石油的替代品。實際上,這一措施正在加速全球糧食價格的飛速上漲,使得亞馬孫河流域的叢林被毀滅,並使全球變暖加劇。
石油價格的調節
生物燃料使用的全球安全意義。如果石油需求量的增加未被抑制,則會使石油消費國更易受到傷害,嚴重時會使石油供給中斷並會導致油價劇烈波動。有報道表明,生物燃料可能終有一天會成為一種可替代能源,但是,生物燃料的使用對全球能源安全的意義,經濟的、環境的和公共健康的意義還有待於進一步評估。經濟學家不同意生物燃料生產規模的擴大會影響石油價格的說法。在交易市場上,如果不使用生物燃料的話,石油價格將會比目前的還要高15%,汽油價格也會高出25%。可替代能源的有序供給將有助於平抑汽油價格。生物燃料的使用規模受到了極大的限制,而且成本昂貴,這使得它的價格與石油價格之間存在著極大的差異,由於這種能源成本的基本要素之一就是食品的價格,所以生物燃料的生產也代表著對食品價格的調節作用。
「來源於植物的生物燃料轉化為能量,從本質上講是植物通過光合作用獲得的太陽能的再利用。太陽與可用能(與總量的換算)轉化效率比較表明,太陽能發電板的能量效率是穀物乙醇的100倍,是最好的生物燃料的10倍之多。」
上漲的食品價格——「食品與燃料」之爭。這是一個引起全球爭論的話題。對此,美國國家穀物生產者聯合會(National Corn Growers Association)就認為生物燃料並不是主要原因。一些人認為,問題在於政府對生物燃料支持的結果。另一些人則認為,原因在於石油價格的上漲。食品價格上漲的影響對於較貧窮的國家尤甚。在一些國家中,凍結生物燃料生產的呼聲高漲,那裡的人們認為生物燃料不應與食品生產展開競爭,更不能「人口奪食」!生物燃料生產所追求的目的應該在於不會影響到1億多目前因食品價格上漲而處於危險邊緣的人們的生活。
能源效率在物理學與工程學,包括機械與電子工程學中,能量效率是一個量綱一級量,其值介於0到1之間,當用100相乘時,以百分比表示。在一個處理過程中的能量效率以eta表示,其定義為:效率η=輸出/輸入,式中輸出為機械工作的量(以瓦計),或是處理工程中釋放出來的能量(以焦耳計),而輸入則指輸入供加工處理所使用的能量或工作量。根據能量轉換原理,在一個密閉體系內的能量效率永遠不會超過100%。與生物燃料的能源平衡。用原材料進行生物燃料的生產需要能量(如農作物的種植、最終產品的轉化與運輸以及化肥、滅草劑和殺真菌劑的生產與使用),而且也會對環境產生影響。生物燃料的能量平衡是由燃料生產過程中所輸入的能量與它在汽車發電機內燃燒時所釋放出能量的比較,這會因輔料和預計的使用方式而變化。從向日葵籽生產出來的生物柴油可以產生0.46倍於化石燃料的輸出效率;從大豆產生的生物柴油所產生的輸出效率則可達化石燃料的3.2倍。與從石油煉制的汽油和柴油的輸出效率相比,生物柴油分別是前者的0.805倍,後者的0.84倍。
對於生物燃料來說,生產每英熱單位的能量所需輸入的能量要大於化石燃料:石油可以用泵從地下抽到地面,而且其能量效率要高於生物燃料。然而,這並不是一個用石油取代生物燃料的必需條件,而使用生物燃料也並不會對環境產生影響。人們已經進行了關於生物燃料生產能源平衡計算方面的研究,結果顯示,因所採用的生物質和生產地點不同將會導致能源平衡的極大差異。生物燃料生產的生命周期評估表明,在某些條件下,生物燃料的生產僅僅限制了能量的儲存和溫室氣體的排放。化肥輸入和遠距離的生物質運輸能夠減少溫室效應氣體(GHG)的儲存。
人們可以設計生物燃料生產工廠的位置,以便盡量減少所需運輸的距離,建立農業管理制度,以限制用於生物生產所使用的化肥量。一項關於歐洲溫室氣體排放的研究發現,用農作物種子(如歐洲油菜籽)所製成的生物柴油的「油井—車輪」(WTW)CO2排放量可能幾乎與從化石燃料製取的柴油的CO2排放量相當。這表明一個簡單的結果:產自澱粉類農作物的生物乙醇所產生的CO2排放量幾乎與產自化石燃料的汽油的一樣多。這項研究表明,第二代生物燃料具有低CO2排放量的特點。其他獨立的LCA研究表明,同等當量的生物燃料與化石燃料相比,前者的CO2排放量是後者的50%左右。如果使用了第二代生物燃料生產技術或者減少化肥的生產,則可以減少80%~90%的CO2排放量。通過使用副產品提供熱量(如用甘蔗渣生產乙醇),溫室效應氣體的排放量還將下降。
具有相互依存作用的植物的搭配能夠提高效率。一個實例就是利用來自工業產生的廢熱進行乙醇的生產,然後進行冷卻和循環,用於替代能夠使大氣升溫的水熱蒸發。
水力能由流動的水體產生的能量。
水力能或水動力能是活動著的水產生的力或能量。它可以被聚集起來供人類使用。在進行大規模的商業用電之前,水力能被用於灌溉和多種機械,如水磨坊、紡織機械的運轉、鋸木廠等。在一個工廠(作坊)里,可以通過下落的水產生壓縮空氣,然後利用這種壓縮空氣去推動遠離水源的機械運行。
水力能的利用已有數百年的歷史。在印度,建起了水輪機和水磨坊;在羅馬帝國,人們用水力機械磨麵粉,還用於鋸開木材和石料。從蓄水池內釋放出的水波浪能被用於提取金屬礦——這就是所謂的「水清洗(礦石)法」。水清洗法在中世紀的英國得到了廣泛的應用,後來的人們用此法萃取鉛和鋅。再後來,該法演化為水力選礦法,廣泛應用於美國加利福尼亞州的黃金礦的淘選工藝中。在中國和其他遠東地區,人們用水力作為「水輪機」,將水從地下抽到地表,引入灌溉的水渠中去。19世紀30年代是世界上運河的修築高峰期,人們利用一種傾斜面的鐵路藉助水的能量在陡峭的上坡、下坡上拉動河裡的駁船行駛。直接的機械能傳遞需要利用當地的瀑布,如19世紀後半葉,在美國密西西比河的聖安東尼(Saint Anthony)瀑布,水的落差可達50英尺,人們在那裡建起了許多代客加工的磨坊,這些磨坊的建立促進了明尼阿波利斯(美國明尼蘇達州東南部城市)的發展。水力能的利用也呈現網狀發展,利用多條管線從源頭將具有壓力的液體(如泵)輸往終端用戶,以供機械的運行。如今,水力能的最大用途就是發電,它可以使人們用上來自水力的廉價能量。