導航:首頁 > 觀俄羅斯 > 俄羅斯核電站什麼時候啟動

俄羅斯核電站什麼時候啟動

發布時間:2023-02-14 14:57:01

❶ 俄羅斯首座漂浮核電站出海為什麼會引起憂慮

英媒4月30日報道稱,俄羅斯建造的漂浮核電站第一次起航出海。環保人士稱之為「核泰坦尼克」。

據英國4月28日報道,「羅蒙諾索夫院士」號漂浮核電站28日被拖出其建造地聖彼得堡造船廠。

「羅蒙諾索夫院士」號所有人、俄羅斯國家原子能公司透露,它將經過波羅的海,被拖到位於摩爾曼斯克的一處基地。

「羅蒙諾索夫院士」號的建造目的是為俄羅斯偏僻的極北和遠東地區供電。

俄羅斯國家原子能公司說,核反應堆產生的電力足夠10萬人的城鎮使用。

第二艘漂浮發電站的建造工作預計將於2019年啟動。俄羅斯官方媒體報道稱,這種發電站還可能被銷往其他國家。

在「羅蒙諾索夫院士」號建造期間,挪威和瑞典等斯堪的納維亞半島國家的官員就已經對可能發生的海上事故表達了憂慮。

然而,俄羅斯國家原子能公司堅稱,已採取防護措施,可避免核災難。

該公司在一份聲明中說:「該電站的設計具備極佳的安全限度,能應付所有可能的威脅。核反應堆堅不可摧,能夠抵禦海嘯和其他自然災難。此外,漂浮發電站上的核反應過程符合國際原子能機構的所有要求,對環境不構成任何威脅。」

❷ 核電站什麼時候發明的

。1954年在庫爾恰托夫的主持下,蘇聯建成了世界上第一座核電站——奧布靈斯克核電站。該核電站被稱為第一核電站。它的建設是當時的最高機密,即使是身處建設工地的工人也不知道自己究竟在建造什麼。1954年6月27日,俄語廣播電台播報的一則新聞震驚了全國和世界,「在科學家和工程師的共同努力下,蘇聯建成了世界上第一座5000千瓦發電量的核電站,該核電站已為蘇聯農業生產項目提供所需電力。」下面就跟360常識網一起具體看看世界上最早的核電站等相關內容。

最早的核電站簡介

1954年在庫爾恰托夫的主持下,蘇聯建成了世界上第一座核電站——奧布靈斯克核電站。該核電站被稱為第一核電站。它的建設是當時的最高機密,即使是身處建設工地的工人也不知道自己究竟在建造什麼。

1954年6月27日,俄語廣播電台播報的一則新聞震驚了全國和世界,「在科學家和工程師的共同努力下,蘇聯建成了世界上第一座5000千瓦發電量的核電站,該核電站已為蘇聯農業生產項目提供所需電力。」

原子能利用的歷史要追溯到二戰以前,遠遠早於1954年6月世界上第一座核電站啟動的那一天。這項建設工程曾被稱為「和平利用原子能」,因此就有了第一個核電站反應堆。該工程凝聚了千萬傑出俄國科學家和工程師的集體智慧,以建設工期短而載入史冊,從方案設計到實際竣工僅用了三年時間。它的建成成為人類和平利用原子能的成功典範。

❸ 核電的發展過程是怎樣的

1986年10月,總部均設在巴黎的國際能源局和經合組織屬下的核能源局,分別發表報告,指出整個西歐今後仍會致力發展新能源,尤其是發展核電廠;如果停止發展石油以外的能源,可能在90年代再次陷入能源危機。從實際來看,前蘇聯核電廠發生事故,對歐洲震動最大,但並沒有影響歐洲各國續建核電站的計劃。例如:聯邦德國反對派要求在10年內取消核電站,但是政府並不放棄繼續新建5個電站的計劃,到1990年,聯邦德國核電站發電能力達2230萬千瓦。
法國也有反核組織,但在民意測驗中,支持興建核電站的佔65%,它將繼續興建17個新的核電站。
前蘇聯計劃的核能曾以特別快的速度發展。根據蘇聯從1986年到2000年的經濟和社會發展的基本方針;蘇聯到1990年生產14800~18800億度電,其中3900億度電來自核電站,約佔20%。同1985年相比,到1990年通過發展核能節約了7500萬~9000萬噸標准燃料;蘇聯解體後,俄羅斯科學家還提出建造地下核電站的方案。
再從日本方面來說,1985年的核發電能力僅為2452萬千瓦,佔全國總發電能力的16%;到20世紀80年代末核發電量達1590億度,佔全國總發電量26%。而其他能源發電量所佔比例是:油佔25%,天然氣佔21%,水力佔14%,煤佔10%,地熱等佔4%。核電占據鰲頭,因此,日本電力工業已開始進入以核電為主力的時代。1992年6月的統計表明;日本運行的核電站有42座,裝機總容量為3000萬千瓦。
日本核電的發展值得我們注意。
日本電力設備的結構,戰前是「水主煤從」,戰後從20世紀60年代初起變成「油主水從、煤從」。20世紀70年代,特別是第一次「石油危機」後,發電用能源向多樣化發展。在這一過程中,同油電在整個發電量中的比重下降成正比,核電飛速增長。
核電在日本所以能夠異軍突起,主要在於核燃料用在發電具有很多優越性。在至今人類能掌握的各種發電能源中,它是最經濟、穩定的高效能源。
日本從1966年建成第一座核電站以來,核電站從未發生過大的事故。
日本的電力公司非常重視普及核電知識的宣傳。在核電站比較集中的地方,都有由他們出資建成的核電展覽館,供市民免費參觀,裡面有反應堆的模型和顯示核發電整個過程的掛圖等。看過之後,因不了解核發電而產生的不安,就會消除。日本人民因受過原子彈傷害,對核問題比較敏感。但是由於認識到核電和核彈的區別,在資源缺乏的日本發展核電有利,因此,並不一般地反對建核電站。就是反對建核電站的部分在野黨,近些年態度也有變化。
1986年7月18日,日本綜合能源調查會的原子能部,提出了對21世紀日本核電遠景的預測報告,根據這一預測,2010年,日本發電用核反應堆將達86座,2030年,將達112座;核發電設備能力,2010年、2030年將分別達到當時的3.5倍、5.5倍。過25~30年左右,日本用的電,每兩度中就有一度是核電。
日本綜合能源調查會是通產大臣的咨詢機關。它的這個預測報告制定於前蘇聯切爾諾貝利核電站事故之後,在制定報告過程中,國際油價已經出現大幅度下降。但是這個報告證明,日本並未因為這兩個因素而動搖今後發展核電的基本方向。
據日本通產省資源能源廳1987年初發表的數字表明,就是在1986年日本核電站的開工率達76.2%,創歷史最高水平。
資源能源廳說,1986年,日本全國運轉中的各種類型的核反應堆共有32座。平均開工率自1982年以來,已連續五年超過70%。這在西方發達國家中也是高水平的。若同1985年統計的開工率相比較,日本的開工率僅次於聯邦德國。
最後,再看一看核發電量最多的美國。
美國開發核電已有悠久的歷史,據美國能源部1986年統計,美國有100座核電站在運行,核電站數量居世界第一位。當時還有27座正在興建中。他們長期以來在開發核電方面積累了豐富的經驗。美國核電站多年的建設和運行經驗證明,核電站事故發生的可能性雖然不能絕對排除,但百分比是微小的。如果在設備和管理方面,嚴格地按照科學規定辦事,事故是可以避免的。
美國核能專家認為,選擇優良的核反應堆堆型是確保核電站安全運行的關鍵。迄今為止,發生嚴重事故並危及人體安全酌,一般都是石墨堆,而壓水堆不容易發生嚴重事故,即使發生事故,由於種種安全措施,放射性物質也不易因外泄而引起對環境的污染和危害人體。
由於經濟需要等方面的原因,美國核電站絕大部分都建在人口稠密的城市附近。但是,因為核電站建造者嚴格遵守核規章委員會制定的安全標准條例,所以核電站從未出現過實際威脅附近城市居民安全的嚴重事故。美國核規章委員會要求核屯站的建造者在提出建造申請時,必須制定相應的安全保障措施。經過核規章委員會嚴格審查認可後,才發放建站許可證。核電站在建造和運行期間,核規章委員會要定期進行檢查,如果發現問題,有權對核電站提出包括停止運行在內的各種要求。
這些,都無疑為世界核電的發展提供了寶貴的經驗。
美國、前蘇聯、歸本及歐洲大部分地區的情況是如此,其他地方的個別國家,雖有點變化也就無關大局了。因此,國際原子能機構1987年2月公布的。數字表明,世界核能發,展總的趨勢沒有受切爾諾貝利事故太大的影響,1986年又有21座核反應堆聯網發電,新增加核發電量2094萬千瓦。
當切爾諾貝利事故煽起世界性的反核浪潮寧息以後,人們能夠比較冷靜地對事件作出公正的評價。1987年初,21國歐洲委員會議會就核安全問題舉行了聽證會。他們拿1986年4月26日切爾諾貝利反應堆發生爆炸和起火,對人的健康造成的已知的和估計會產生的長期影響,與普通電廠同其他輻射源對人們的健康和環境帶來的危險作比較。專家們得出了基本一致的看法,認為盡管發生了這次核事故,利用核燃料發電仍然比利用普通燃料發電要安全得多。
前蘇聯的國家原子能利用委員會副主席說,如果重新用煤和石油等有機燃料來發電,對人們的健康和環境帶來的危險將會大大增加。
設在維也納的國際原子能機構核安全部門的負責人也說:「人們現在已認識到『煤和石油燃燒後產生的物質』對我們的環境是一個重大的威脅」。他提到了一例子,一個發電能力為100萬千瓦的普通電廠在城市居民中引起死亡的人數和生病的人數可以分別達到3~30人和2000~20000人,而一個發電力相仿的核電廠在正常運轉的情況下引起死亡和生病的人數最多分別是一個。
對於核能的安全性已經為國際所公認。
核能的優點是十分鮮明的,其能量密度大,功率高,為其他能源所不及。這就容易使安全裝置集中,提高效率。人們往往忽視,功率小設施就分散,即使微小的危險也隨之分散而導致經常發生大量不被人發覺的各種事故。
在能量儲存方面,核能比太陽能、風能等其他新能源容易儲存,後者常常什麼時候有,什麼時候才能利用,除非安裝儲存緩沖器,但這種裝置目前價格昂貴。核燃料的儲存佔地不大,在核船舶或核潛艇中,也同樣占據不大空間,因為它們兩年才換料一次。相反,燒重油或燒煤設備需龐大的儲存罐或佔地很多。
核電作為一種新興的能源事業,已在世界能源中佔有舉足輕重的地位,但它並非十全十美。正像其他任何先進技術一樣,核電既能造福於人類,也伴有一定的潛在風險。從對核能的指責聲中,我們就聽到了一些對生態環境的影響以及其他疑慮。例如,台灣北部核能一、二廠和南部的核三廠,對沿海漁業就有不小的沖擊;南灣的珊瑚也因受到廢熱水浸害而死亡。
其實,無論是核電站還是火電站,都有餘熱排人環境,因此廢熱對環境的影響並不是核電站獨有的,只是程度上有差別。核電站通過冷卻水排入水中的余熱要比火電站高約35%~50%。
世界上很多國家把核電站建在沿海,利用海水作冷卻水,既可為核電站提供無限的冷卻水,又比河水能更好地消散余熱,減少余熱對環境的影響。為了盡可能減少余熱對天然水域的影響,人們還採取了不少措施,如制定排放標准,限制排放引起的升溫;選擇合適的排放位置及排放方式;提高熱轉換效率;余熱利用等。
日本核電站排水溫度一般高出海水溫度有7~9℃,進入海域後擴散很快,溫度迅速下降,一般在1~2公里外的水表面溫度即降到1~2℃,因此對水資源不會帶來有害影響。據國外報道,多數核電站附近的捕魚量沒有明顯變化,有的地方還有增加。
核電站在投入正常運行時,進入廢氣、廢液和固體廢物中的放射性物質只是極少的一部分。核電站設有完善的三廢處理系統,可對放射性廢物實行有效的處理。在核電站周圍還設置許多監測點,定期採集空氣、水樣、土樣和動植物樣品進行分析,監督放射性物質對環境的污染。放射性物質很難以有害量進入環境。
因此,擔心和憂慮核電站污染環境和破壞生態平衡是不必要的。利用核電站循環水的排水灌溉農田;利用冷卻永的余熱為溫室供熱,培養瓜果和魚類是可以做到的。
最後,從經濟上的未定因素來考慮。一座核電站的服役年齡為30~40年,退役以後,其費用應當計人核發電的成本中去。
現在,世界上第一個投入使用的美國核電站,已經走完30年的運營期而報廢。目前世界上已有或正在興建的500多個反應堆,或早或遲也會走到這一步。美國能源部估計,美國現有16個反應堆將在本世紀末到期,到2005年將有53個反應堆,2010年有70個反應堆到期報廢。現在看來,處理這些反應堆的成本比剛進入核電時代預計的高,報廢日期又比預計日期提前,電站內金屬管件受輻射而變脆的情況比當初估計的嚴重。為此,專家們已開始認真考慮核電站報廢問題,提出了下列幾種處置方案:
(1)封存處理:從反應堆中移走核燃料,並對輻射進行監控。這些措施實行之初十分簡便,但一些專家認為,由於輻射要持續若干世紀,長期持續的警戒和監控,累計成本可能很高,最後還是不得不拆除。
(2)埋葬處理:從反應堆中移走核燃料,加蓋一層厚厚的水泥殼,把整個電站區罩起來。蘇聯切爾諾貝利核電站發生事故後,就是這樣處置的。埋葬具有與封存相同的許多優點,但實施中人員會受不同程度的放射性沾染。
(3)拆除處理:優點是無須背上長期警戒和維護的沉重包袱,而且站區隨即可作他用,包括建設新的核電站。但問題在於對施工人員可能造成嚴重的輻射沾染,且拆除成本高。
美國希平波特核電站,成了第一個進行拆除處理方法的試驗場。
因此,今後核能工業的發展,我們仍然應該謹慎地先建立核能工業發展的評估制度和嚴密的管理措施,這樣才能使核工業健康發展而免蹈某些國家先行中所犯錯誤的覆轍。
世界核電工業之所以發展迅速,主要因為它具有較強的經濟競爭力、環境污染較小、燃料豐富三個優點。在權衡利弊時,從現代的觀點來看,無論如何,利還是大於弊。
目前,人類對核燃料即鈾資源的勘探工作還十分有限。但是根據已經發現的天然鈾礦,如果用於核發電,足可以使用幾千年。
1986年的另一項重要科技成就是,日本金屬礦業團在瀨戶內海的秀川縣成功地建造了世界上第一座用海水提鈾的工廠,這座於4月下旬投產的提鈾廠年產10噸鈾。海水提鈾的工業化,為人類開發海水中數十億噸鈾儲量邁出了可貴的第一步。
如果將這項儲量考慮在內,那麼,廣闊的海洋幾乎成為核燃料取之不盡的寶藏。
1686年,是核工業有沉痛教訓的一年,也是獲得很大成就的一年。
自核電站問世以來,由於工程技術的不斷改善使核電站的運行性能不斷提高,運行的安全可靠性日趨完善,事故發生率也在下降。這就使得核電站的時間利用率和負荷明顯提高,進一步顯示了核電站的經濟效益和它在各類發電系統中的競爭能力。
誠然,核電技術的先進性和可靠性是確保安全的重要因素,但實行嚴格的科學管理同樣也是確保安全的重要因素,這是人們從這場切爾諾貝利核事故中應該吸取的嚴重教訓。
安全設備的日趨復雜化,促使我們必須把希望寄託在一系列復雜設備運行的安全無誤上。那麼能不能建造出包含內在安全因素的核反應堆呢?回答應該是肯定的。
瑞典研製成功的「內在過程絕對安全」反應堆就是具有代表性的新型反應堆。它的設計思想是:即使初級冷卻系統失靈,堆芯仍能冷卻下來。內在安全能保證不用復雜的安全設備,反應堆仍然能安全運轉。
核電站的充分安全問題並非是不能解決的。
不可否認,切爾諾貝利事故對核電發展帶來某些消極作用。然而,這並不能否定核電的優點。回顧核電的發展史,尤其是從世界性能源發展的長遠觀點看,核電站的發展前景是美好的。隨著工程技術和管理水平的不斷改善,必將給核電工業帶來新的生機。
我們不妨再就日本的情況來說,這個國家非但沒有停止發展核電,而且還著手制定了面向21世紀的核電長期戰略計劃,並以每年投產兩座核反應堆的速度增建新的核電站。原因就在於日本已擁有一整套安全防護對策。
日本的安全對策是在「沒有安全也就沒有原子能利用」的前提下,從原子能發電設備的多重保護設計、國家制定嚴格的發展原子能發電的安全規則、原子能發電企業採取萬全的運營措施、提高操作人員的素質、減少人為的失誤、加強地方居民對核電站安全運轉的監督和關注為內容,構成一套完整的安全防護體系。
日本在技術上把核反應堆運轉過程中在堆內產生和積存的放射性物質全部密封起來,以免有害氣體外泄。即使在運轉過程中發生事故,也能把放射性物質封閉起來而不影響周圍居民的安全。
他們實施多重防護主要包括:
(1)防止發生異常的對策:要求核發電系統在設計上必須留有足夠的安全系數,選用的設備和材料必須保證質量,對施工質量也要有嚴格的要求和驗收,發電系統中還配有在部分機器出現異常時能自動確保安全的「安全系統」,和一旦出現操作失誤能確保整個系統安全的「連鎖裝置系統」。對投入運轉後的核反應堆和渦輪機實施嚴格的定期檢查。
(2)防止異常事故擴大對策:主要是在設計上配有一套能夠自動檢測,早期發現多種異常並使核反應堆緊急停止,自動消除余熱的系統。
(3)防止放射性物質泄出的對策:配有一套出現異常時使用的反應堆堆芯冷卻裝置,它由高壓注人裝置、低壓注入裝置、反應堆堆芯噴霧器等系統構成。
日本政府不但訂有各種核發電安全對策的規章制度,而且對核電站從設計、興建到投產後的安全運轉都實施積極的監督和干預。設計階段,通產省首先聽取各方專家對所設計核反應堆的安全性進行充分論證,然後由通產大臣發放准許製造的許可證。建設階段,在對工程設計、施工方法和內容進行認真的審查之後,由通產省授予准建權。一個核電站竣工而未投入運轉之前,通產省將對它進行嚴格的驗收。
此外,對管理操作人員也進行嚴格的挑選和訓練。新人進站後,首先要在有經驗的操作員的指導和監督下見習一年,然後到操作訓練中心參加標准訓練課程的學習,才可擔任輔機操作員。工作五至六年後,輔機操作員才能作為主機操作員走上關鍵技術崗位。具有六至七年主機操作員經歷,並通過了國家考試者,才有資格被選拔為運轉負責人。此外,主機操作員每三年需接受一次運轉訓練中心的模擬訓練,輔機操作員每年需接受三次模擬訓練。
為加強核安全的研究,完善核安全對策,日本科學技術廳決定,在核安全委員會內設立核事故分析專門機構。
核事故分析專門機構的任務是,研究如何從組織上保障核設施的安全,經常重新估價安全措施的可靠性,以防止重大事故發生。此外,這個專門機構還要制定緊急情況下的人員撤離方案,對引起事故的錯誤操作原因進行綜合研究。
為加強核安全管理和防範措施,日本科技廳要設立兩個咨詢系統,一個是國外核事故可能造成對日本污染的預測預報系統;另一個是能夠在核事故發生後及時提供切實可行措施的緊急技術建議系統。
預測預報系統以氣象數據為依據,要能測出距日本2000~3000公里以內地區的核輻射劑量。緊急技術建議系統要掌握國內所有核成套設備的管道線路圖和其他數據,在非常情況下根據這些數據,及時提出如何防止事故擴大及減少放射性污染等技術性建議。
日本科技廳認為,這些機構雖然是一種咨詢性質的機構,但是他們可以協助核安全委員會,迅速地為國家制定有效的應急對策。
前蘇聯切爾諾貝利核電站發生事故後,日本更加清醒地認識到進一步強化安全對策的重要性。他們進一步充實完善國家有關發展核電的各種規章制度,使核電技術標准更加完善。國家對核電站實行有效的監督、管理,制定新的核反應堆的投產、廢棄的規定與措施,制定與核燃料循環相應的技術標准。國家還建立專門的機構使安全檢查制度化。加強核電企業的管理機能,把確保安全作為企業經營最重要的一環。
日本還開展「官、民、學」三位一體的研究體制,積極推進新的核發電技術和安全防護技術的研究,要做到防患於未然。同時還考慮應急狀態下的防護措施,如發展專用機器人。
日本能做到的事情,別的國家也可以去做。核技術終將會成為一門可以使人完全放心的安全技術。
前蘇聯切爾諾貝利核事故這種壞事正在被各國認真總結教訓,逐漸轉變為推動本國核電事業健康發展的好事。他們完善了各種有關核能的法規,規定了核能委員會的職能、核能使用部門的職能和監督機構的職能。
在核能領域,由於切爾諾貝利的震動,1986年成了十分活躍的一年,我們國家還派出記者特意對西歐的核電部門進行考察訪問。由於聯邦德國核電事業無論在經濟技術方面還是設備安全、管理嚴格方面均堪稱楷模,記者對聯邦德國核電事業作了一番巡禮,向中國讀者提供了許多可作形象思維的感性材料。
對前聯邦德國來說,「除了核電之外,沒有別的選擇」。
從前聯邦德國的經驗來看,核電除了清潔價廉之外,還有兩個被我們曾經忽視的好處:一是推動高技術工業發展,帶動相關部門同步發展;二是鍛煉一支高水平的科研和建設隊伍。以生產電力的多寡和運轉率為標准,世界前七位核電站全部在前聯邦德國。前聯邦德國核電站以其經濟效益高、設備可靠和人員專業化程度高著稱於世。
前聯邦德國的核電事業為人們展示了一個十分可信的現實,事實勝於雄辯;核能的高效及安全,只要人們嚴肅認真地對待,是可以做到的,是切實可行的。
目前,國際上核電站設計專家為提高核電站的安全系數進行了深入的調查研究。研究方向大體有兩個,一是探討地下核電站的可行性,二是增補地上核電站的保安措施,尤其是對意外險情的防範措施。研究的結果無疑將導致出現更安全的核電站。
對地上核電站安全運營問題的研究,得出了所謂綜合保安的設想,並具體化為一些新的設計與運營規則。這些新規則要求,核電站設計者在設計時和操作員在值班時,均應考慮和分析可能導致事故的某些意外情況。現有核電站有一套對付反應堆發生設想有可能發生的故障的技術手段,但是過去美蘇核電站事故表明,核電站在運營中會出現一些意想不到的情況,所以新規則要求核電站的設計中要有能夠幫助操作員,在出觀意外險情時及時排除險情的技術裝置。
新規則的另一個重要部分是所謂「雙防系統」。現有的核電站都有一個鋼筋混凝土防護罩,旨在防止反應堆出故障時其放射性物質逸出而危害附近的人畜和環境。但已發生的核電站事故表明,單有這種防護罩還不行。一旦出現未預料到的情況而罩內壓力猛升至5個大氣壓以上,罩本身就可能失去密封性甚至被脹破(爆炸)。新規則要求核電站附設一套可確保操作員使罩內壓力及時降至通常水平的技術設備,必要時操作員還可以啟動防輻射的過濾裝置。這就是新規則所說的「雙防系統」。
地下核電站的必要性和可行性問題,已被認定,它比地上核電站更為安全,並且經濟和技術上都是可行的。前蘇聯的核反應堆的防護罩只有1.6米厚,反應堆內的熔融核燃料一旦逸出而壓到罩壁上,不到1小時就會把罩燒毀。在新的「核電站-88」設計中,防護罩也只能耐受4.6個大氣壓的內部壓力,電纜、管道等也只能耐受8個大氣壓,而在反應堆核燃料熔融事故中蒸汽與氫的爆炸會產生高達13~15個大氣壓的壓力。所以,在未能設計出「絕對安全的反應堆」之前,應將核電站建在地下。目前所說的地下核電站,是把反應堆和控制系統建在石質或半石質地層中的中小型核電站。
據分析,這種地下核電站至少可保證運營中不危害周圍環境,不發生切爾諾貝利核電站那種浩劫式的事故後果,而且便於封存壽終正寢的反應堆,減輕地震對核電站的影響。此外,把核電站轉入地下還可以使核電站的建設得以在現有技術水平上得到發展,而無須等到「絕對安全」的核電站設計問世之後再發展核屯事業。進一步的分析表明,把4個機組的100萬千瓦核電站反應堆和控制系統建在50米深的地下,建築費用只、增加11%~15%,但如果把關閉核電站所需費用算進去,那麼地下核電站的造價比地上核電站還要低一些。拿2個機組的50萬千瓦供熱核電站來說,將反應堆設在地下的建築費用比地上同類核電站多20%~30%,如把關閉核電站所需費用打進去,則只多4%~11%。
1995年底時全球運營中的核電站為437個。
正在運行中的核電站,規模上美國居首位,其次為法國、日本、德國、俄羅斯、加拿大。法國核電佔法國電力總量的78.2%,核電開發幾乎達到極限。
國際上的分析家早於1993年5月作了預測,認為以後10年內亞洲對核電的需求將激增。
核能開發是世界各國21世紀能源戰略的發展重點。
核電這門現代高技術產業正以它強大的生命力,克服它前進道路上的種種障礙,茁壯成長,日趨成熟。</p>

❹ 蘇聯的第一座核電站是何時建造的

1954年6月24日,蘇聯建造了世界上第一座核電站。由於具有無污染、成本低等許多優點,核電站受到越來越多的國家重視,成為能源工業發展的新方向。

❺ 前蘇聯核電站是哪次世界大戰中首次使用的

世界上第一座核電站是前蘇聯於1954年6月建成的奧布靈斯克核電站,它成為人類和平利用原子能的成功典範。

另外,1942年12月2日15點20分,著名物理學家恩利克·費米(1901.09.29至1954.11.28)在美國的芝加哥點燃了世界上第一座原子反應堆,為人類打開了原子世界的大門。

❻ 扎波羅熱核電站在哪裡

扎波羅熱核電站位於烏克蘭第聶伯河卡霍夫卡水庫河畔,靠近艾那荷達市,是烏克蘭最大的核電站,也是歐洲最大的核電站之一。烏克蘭約25%的電力來自該核電站。啟動時間為1977年。

當地時間2022年9月11日,烏克蘭國家核能公司:扎波羅熱核電站已完全關閉。烏克蘭扎波羅熱核電站的備用電力線已恢復。2022年10月8日扎波羅熱核電站已完全斷電,柴油發電機正在工作。

扎波羅熱核電站又發生十多次爆炸

當地時間11月19日晚至20日,扎波羅熱核電站發生十多次爆炸。這一系列爆炸結束了這座歐洲最大核電站相對平靜的一段時期。事件發生後,俄烏互相指責這兩天的襲擊由對方主導。

國際原子能機構(IAEA)總幹事拉斐爾·格羅西20日警告稱,有關爆炸的消息令人「極為不安」。 俄羅斯國家原子能集團總經理阿列克謝·利哈喬夫21日稱,是否能在扎波羅熱核電站一帶順利設立安全區取決於華盛頓方面的態度和決定。

❼ 1954年蘇聯建成的核電站叫什麼,它的歷史和位置

1954年,前蘇聯
建成世界第一座試驗核電站奧勃靈斯克核電站
1954年,蘇聯建成世界第一座核電站(5000kW),濃縮鈾為燃料,採用石墨水冷卻堆,建在莫斯科附近的奧布寧斯克

❽ 1954年6月,第一座核電站是哪個國家首先製造出來的

1954年6月,第一座核電站在前蘇聯建成。
世界上第一座核電站——奧布靈斯克核電站,於1954年6月在前蘇聯卡盧加州建成,總輸出功率可達5000kw,成為人類和平利用原子能的成功典範。這所核電廠當時以高度隱秘的方式建造,甚至是工地上的建築工人都搞不清楚他們所在的確切地點。直到1954年的6月27日,前蘇聯政府才通過廣播電台正式向全國和全世界播出了這一震驚聽眾的消息。
在奧布寧斯克核電站中的反應堆當時被命名為「和平原子能」項目。這個核電站是在數以千計前蘇聯著名科學家和工程師共同努力下建造的,其建造的時間創下最短記錄——項目從策劃到實際建造竣工,總共只用了僅僅3年時間。
從這次核電廠的建造中,俄羅斯科學家們獲得了大量寶貴的經驗,為之後該國原子能發展計劃的推動提供了大力的支持。該處反應堆本身在建造時就特意帶有很大范圍的「可調試性」,因此,科學家們就有了更多的實驗材料。
原本在1984年蘇聯曾決定關閉這所核電站,然而在之後的很多年中,蘇聯經歷了不少動盪,導致奧布寧斯克核電站的關閉也和其他很多「計劃中」的事情一樣並沒有按時實現,而且那個時代的蘇聯正需要大量廉價電力,所以奧布寧斯克核電站又繼續工作了18年,直到2002年才正式停工。

❾ 在核電方面,俄羅斯為何成了世界領先者

因為他們研究方法比任何國家都要好,而且事實證明了他們的方法是正確的,因為他們的核電比我們任何一個國家都優秀,包括我們中國。

俄羅斯是世界上最大的核能生產國之一。2018 年,俄羅斯核電站的總發電量為 204 twh,佔全國發電量的 18.7%。1954 年,俄羅斯和世界上第一個用於發電的核電站是 5MW的奧布寧斯克。20世紀80年代,俄羅斯已經投入運行 25 座核反應堆,但是由於 1986年的切爾諾貝利事故以及隨後蘇聯解體造成的資金短缺,其核工業陷入困境。

俄羅斯是世界上少數幾個完全不支持那些看似政治上正確的能源,比如:風能和太陽能,他們也是偉大的國家之一,國家總體戰略是優先發展核能,沒有任何後顧之憂和寬宏大量,看到這里大部分都知道了為什麼他們會成為一個成功的國家。

❿ 核電的發展歷史是怎樣的

您好!核電自1951年12月美國實驗增殖堆1號(EBR-1)首次利用核能發電,1954年6月蘇聯第一座核電廠首次向電網送電,到現在已有近50年的歷史,大致經過了驗證示範、高速發展和滯緩發展三個階段。現在處於復甦之前的過渡階段。
1驗證示範階段

1942年12月美國在芝加哥大學建成世界上第一座核反應堆,證明了實現受控核裂變鏈式反應的可能性。但當時正處於第二次世界大戰期間,核能主要為軍用服務。美國、蘇聯、英國和法國,配合原子彈的發展,先後建成了一批鈈生產堆,隨後開發了潛艇推進動力堆。
從50年代初開始,美、蘇、英、法等國把核能部分地轉向民用,利用已有的軍用核技術,開發建造以發電為目的的反應堆,從而進入核電驗證示範的階段。美國在潛艇動力堆的技術基礎上,於1957年12月建成希平港(Shippingport)壓水堆核電廠,於1960年7月建成德累斯頓(Dresden-1)沸水堆核電廠,為輕水堆核電的發展開辟了道路。英國於1956年10月建成卡爾德霍爾(CalderHallA)產鈈、發電兩用的石墨氣冷堆核電廠。蘇聯於1954年建成奧布寧斯克(APS-1)壓力管式石墨水冷堆核電廠後,於1964年建成新沃羅涅日壓水堆核電廠。加拿大於1962年建成NPD天然鈾重水堆核電廠。這些核電廠顯示出比較成熟的技術和低廉的發電成本,為核電的商用推廣打下了基礎。
2高速發展階段

60年代末70年代初,各工業發達國家的經濟處於上升時期,電力需求以十年翻了一番的速度迅速增長。各國出於對化石燃料資源供應的擔心,寄希望於核電。美、蘇、英、法等國都制訂了龐大的核電發展計劃。後起的聯邦德國和日本,也擠進了發展核電的行列。一些發展中國家,如印度、阿根廷、巴西等,則以購買成套設備的方式開始進行核電廠建設。
美國輕水堆核電的經濟性得到驗證之後,首先形成核電廠建設的第一個高潮, 1967年核電廠訂貨達到25.6GW;從1969年開始,美國核電總裝機容量超過英國,居世界第一位,1973年美國核電總裝機容量佔世界的2/3。1973年世界第一位石油危機後,為擺脫對中東石油的依賴,形成了第二個核電廠建設高潮。1973、1974兩年,共訂貨66.9GW,核電設備製造能力達到每年25~30GW。美國還通過出口輕水堆技術和開放分離功市場,使輕水堆成為世界核電廠建設的主導堆型。
在核電大發展的形勢下,美、英、法、聯邦德國等國還積極開發了快中子增殖堆和高溫氣冷堆,建成一批實驗堆和原型堆。
3滯緩發展階段

1979年世界發生了第二次石油危機。在這以後,各國經濟發展速度迅速減緩,加上大規模的節能措施和產業結構調整,電力需求增長率大幅度下降。1980年僅增長1.7%,1982年下降了2.3%。許多新的核電廠建設項目被停止或推遲,訂貨合同被取消。例如1983年以前美國共取消了108台核電機組以及幾十台火電機組的合同。
1979年3月美國發生了三里島核電廠事故, 1986年4月蘇聯發生了切爾諾貝利核電廠事故,對世界核電的發展產生重大影響,公眾接受問題成為核電發展的障礙之一,有一些國家如瑞士、義大利、奧地利等已暫時停止發展核電。
為保證核電的安全性,美國在三里島事故後所採取的提高安全性的措施,使核電廠建設工期拖長,投資增加,核電廠的經濟競爭力下降,特別是投資風險的不確定性阻滯了核電的繼續發展。
從80年代末到90年代初開始,各核工業發達國家積極為核電的復甦而努力,著手制訂以更安全、更經濟為目標的設計標准規范。美國率先制訂了先進輕水堆的電力公司要求文件(Utility Requirements Document,URD),同時理順核電廠安全審批程序。西歐國家制訂了歐洲的電力公司要求文件(EUR),日本、韓國也在制訂類似的文件(分別為JURD和KURD)。這些文件的基本思想和原則都是一致的。各核電設備供應廠商通用電氣按URD的要求進行了更安全、更經濟輕水堆型的開發研究,美國通用電氣公司同日本東芝公司、日立公司聯合開發了改良型沸水堆ABWR,美國ABB-CE開發了改良型壓水堆系統80+,美國西屋公司開發了非能動安全型壓水堆AP-600,法國法馬通公司和德國西門子公司聯合開發了改良型歐洲壓水堆EPR等,其中ABWR、系統80+和AP-600已獲得美國核監管委員會(USNRC)的最終設計批准書(final design approval,FDA),並有兩台ABWR機組在日本建成投產,運行情況良好。另有四台ABWR機組正分別在日本(兩台)和中國台灣(兩台)建造。與此同時,一些發展中國家也繼續堅持發展核電。中國大陸在90年代初建成三台機組,目前在建的有8台。中國還在幫助巴基斯坦建造300MW的恰希馬壓水堆核電廠。此外,印度、巴西、伊朗等國也在建設核電廠。1998年底在建的36台核電機組中大部分屬於發展中國家。
4美國的核電發展

美國原子能委員會在1951年規定,要在優先發展軍用生產堆和動力堆的條件下,發展民用發電堆。1953年5月原子能委員會給國會兩院提出報告,美國應在民用核能方面保持世界領先地位。1954年艾森豪威爾政府向國會提出修改原子能法,允許私營企業取得反應堆所有權,但核燃料仍歸政府掌握,允許私人使用。在此政策指引下,美國政府與私營企業簽訂合同,建設了第一批實驗驗證性核電廠。這個時期的核電發展,由美國政府負責研究開發及核島的建設和運行,私營企業僅負責廠址准備和常規島建設。合同期滿後,由原子能委員會負責拆除退役,核電廠的風險絕大部分由政府承擔。1957年9月頒布的普賴斯-安德生法案又規定,一旦發生核事故,全部賠償金額限於5.6億美元,其中由政府承擔5億美元,進一步推進了核電的發展。1962年美國原子能委員會向肯尼迪總統建議:認為核電經濟性已優於常規火電,發展核電可為電力供應節約大量資金,並提出了一系列的政策,包括核燃料私有。該建議在1964年原子能法的再次修改中被採納。在核電技術趨於成熟時,為佔領核電的國際市場,60年代末美國政府批准低富集鈾的出口,把美國的輕水堆推向世界。70年代後期,美國的核電發展轉入低潮,1978年以後沒有任何核電廠訂貨。
關於快中子增殖堆的研究發展,1971年6月尼克松總統宣布要在1980年建成快中子商用示範性克林奇河核電廠。1977年4月卡特總統以防止核擴散為由,提出了限制核電發展的政策,決定停止克林奇河快中子堆核電廠的建設和燃料後處理技術的開發。
5蘇聯(俄羅斯)的核電發展

蘇聯在軍用石墨水冷型生產堆的基礎上,開發建設了一批石墨水冷堆核電廠,最大機組容量達1500MW。又在軍用潛艇動力堆的基礎上,開發了具有蘇聯特點的壓水堆核電廠,有440MW(WWER-440)和1000MW(WWER-1000)兩個級別的機組,不僅在國內建造,還出口到東歐各國和芬蘭。
蘇聯國家計劃委員會於60年代提出了能源發展政策,決定在烏拉爾山以西地區不再建造常規火電廠,只建造核電廠。同時考慮到天然鈾資源的長期持續穩定供應問題,決定大力開發快中子增殖堆核電廠。蘇聯成為快中子增殖堆技術最先進的國家之一。70年代建成的原型快堆BN-350和示範快堆BN-600,至今仍在運行,都取得了很好的成績。
蘇聯在發展核電過程中缺乏國際交流。特別是切爾諾貝利核電廠,由於缺乏安全意識,基本安全原則和裝置設計有缺陷,於1986年釀成災難性事故,其後果遠遠超越了國界。在切爾諾貝利核事故之後積極採取措施改進安全性,其中包括建立獨立於核工業的國家核安全監管機構,實施質量保證制度,加強同西方國家交流經驗,以及爭取國際機構和西方國家的支援。
在蘇聯解體以後,俄羅斯的核工業體制進行了重組,把一些原來在烏克蘭等國生產的設備,逐步轉到俄羅斯的工廠生產。隨著世界各國向更安全、更經濟的新一代堆型發展,俄羅斯也積極進行新堆型的開發,如百萬千瓦級WWER-1000機組的改良型V-428型和WWER-640型中型核電機組。
6英國的核電發展

英國在1956年10月建成卡爾德霍爾產鈈、發電兩用石墨氣冷堆核電廠之後,陸續建設了一批石墨氣冷堆核電廠,因利用鎂合金作包殼,稱為鎂諾克斯反應堆(MGR)。英國曾一度是世界上核電總裝機容量最大的國家。
70年代美國輕水堆佔領國際市場後,英國的石墨氣冷堆很難同美國的輕水堆相競爭,為提高機組的經濟性,研究開發了改進氣冷堆(AGR),但仍不能同美國輕水堆相競爭,終於未能打進國際市場。
英國也重視其他堆型的發展,曾建設了一座高溫氣冷堆(Dragon),一座實驗快堆(DFR)和一座原型快堆(PFR)。
英國核電發展長期處於低潮的主要原因:一是在北海發現了大型油田,能源問題得到緩解,對核電的需求不迫切;二是英國在核能發展上實行國家所有制,主管核能開發的國家原子能局UKAEA和經營核電廠的國家電力局CEGB和SEGB未能及早下決心放棄石墨氣冷堆的技術路線。直到80年代後期才決定引進美國技術,建造壓水堆核電廠(Sizewell-B),已比法國晚了20年。
7法國的核電發展

法國早期發展核電的路線大體上同英國類似,採用石墨氣冷堆。所不同的是,當英國進行批量化建設時,法國注意了每建一座都有所改進,因此在技術上比英國進步快。
60年代末,石墨氣冷堆難於同美國輕水堆競爭的問題一出現,法國政府就十分重視,組織論證,由蓬皮杜總統做出決策,改為發展壓水堆,從美國引進技術,消化吸收,建立自己的壓水堆設備製造工業體系。法馬通公司就是這時由法國同美國西屋公司合資成立的,後來變成為法國的獨資公司。法國此時已解決了富集鈾的大量生產問題,因此法國政府決定實施標准化、批量化建設方針,制訂了一個每年投產七台百萬千瓦級壓水堆機組的龐大的核電發展規劃,取得了很好的經濟效益。法國建造核電廠的比投資是世界上最便宜的,發電成本也低於火電。由於經濟上的優越性,促使核電替代火電取得成功,到1998年核發電量已佔全國總發電量的76%。
8加拿大的核電發展

加拿大發展核電起步較早,在50年代即開始了重水慢化、冷卻的天然鈾動力堆的開發。1962年,第一座實驗堆NPD(22MW)投入運行。1967年,第一座原型堆道格拉斯角(Douglas Point,208MW)建成投產。加拿大重水堆的特點是使用天然鈾燃料,採用燃料管道承壓的獨特結構,實行不停堆換料,稱作坎杜(CANDU,由Canada,Deuterium和Uranium三字縮成)型。
在原型堆運行成功後,加拿大開展了較大規模商用坎杜堆的建造工作,於1971~1973年先後建成皮克靈(Pickering)核電廠的4台515MW的機組。在此基礎上經過改進,在1976~1979年陸續建成布魯斯(Bruce)核電廠的4台848MW的機組。80年代以後,加拿大在本國又先後建造了14台坎杜型機組。自80年代至90年代初,加拿大原子能公司(AECL)採用計算機控制等先進技術,不斷改進、完善設計,使得CANDU-6型成為當前世界上技術比較成熟的核電廠之一。
加拿大的坎杜型重水堆對發展中國家頗具吸引力,因為:①大型設備較少,便於實現國產化,減少對外國的依賴;②使用天然鈾燃料,容易取得;③不停堆換料提高了電廠可利用率,使核電廠有良好的經濟性。所以在70年代初即向巴基斯坦和印度出口,隨後陸續又向韓國、阿根廷、羅馬尼亞出口7台機組。中國秦山三期核電廠兩台728MW的機組也採用CANDU-6型,將於2003年投產。
9日本的核電發展

同美、蘇、英、法相比,日本在發展核電方面是個後起的國家。由於日本能源資源缺乏,工業發展較快,能源的持續穩定供應是日本政府最關注的問題之一。日本政府認為由於核燃料便於儲備,核電可視作「半國產的能源」,有助於減少石油的進口,對實現能源多樣化、克服脆弱的能源供應結構有重要作用。因此日本政府一貫積極推進發展核電,70年代石油危機之後也並未因世界核電發展進入低潮而動搖。
日本第一座商用核電廠(166MW的東海村)是從英國進口的石墨氣冷堆核電廠(1966年投產,1998年關閉)。後來改為採用美國的輕水堆。有四家電力公司採用壓水堆,五家電力公司採用沸水堆。由日本的設備製造廠商三菱公司同美國西屋公司合作掌握了壓水堆核電技術,東芝公司和日立公司同美國通用電氣公用合作掌握了沸水堆核電技術。
在新一代更安全更經濟的堆型開發上,日本在同美國合作中發揮更大作用。標准化的1350MW先進壓水堆APWR於1990年完成設計工作。標准化的先進沸水堆ABWR在柏崎·刈羽核電廠6號、7號機組中被採用,於1991年訂貨,1997~1998年建成投產,是世界上最早建成的滿足電力公司要求文件的新一代堆型。
為解決核燃料的長期穩定供應問題,日本政府還積極支持快中子增殖堆技術的開發,先後建成常陽(Joyo)快中子實驗堆和文殊(Monju)快中子原型堆。為研究鈈的再循環利用,建成了一座普賢(Fugen)先進轉化堆ATR。
10中國的核電發展

中國為了打破超級大國的核壟斷,保衛世界和平,從50年代後期即著手發展核武器,並很快掌握了原子彈、氫彈和核潛艇技術。中國掌握的石墨水冷生產堆和潛艇壓水動力堆技術為中國核電的發展奠定了基礎。80年代初期,中國政府制訂了發展核電的技術路線和技術政策,決定發展壓水堆核電廠。採用「以我為主,中外合作」的方針,引進外國先進技術,逐步實現設計自主化和設備國產化。
自主設計建造的秦山核電廠300MW壓水堆核電機組,於1991年底並網發電,1994年4月投入商業運行。同香港合資,從外國進口成套設備建造的廣東大亞灣核電廠,兩台930MW壓水堆機組,分別於1994年2月1日和5月4日投入商業運行。
目前正在建設4座核電廠8台機組。秦山二期核電廠兩台600MW壓水堆機組按自主設計、自主管理方式建設。嶺澳核電廠兩台1000MW壓水堆機組按大亞灣核電廠方式建設,改為完全由中方自主管理,請外商當顧問,提高了設備國產化的比例。秦山三期核電廠兩台700MW坎杜型重水堆機組由加拿大原子能公司按交鑰匙方式總承包建設。田灣核電廠兩台WWER-1000(V-428型)壓水堆機組從俄羅斯進口成套設備。以上各機組計劃於2003年至2005年建成。
中國台灣現有三座核電廠6台機組,其中4台是沸水堆,2台是壓水堆,總裝機容量為4884MW,都是引進美國技術建造的。正在建設的第四座核電廠,兩台機組都採用美國通用電氣公司同日本東芝、日立公司聯合開發的先進沸水堆(ABWR),裝機容量為1300MW。謝謝閱讀!

閱讀全文

與俄羅斯核電站什麼時候啟動相關的資料

熱點內容
金華義烏國際商貿城雨傘在哪個區 瀏覽:759
俄羅斯如何打通飛地立陶宛 瀏覽:1136
韓國如何應對流感 瀏覽:918
在德國愛他美白金版賣多少錢 瀏覽:959
澳大利亞養羊業為什麼發達 瀏覽:1392
如何進入法國高等學府 瀏覽:1472
巴西龜喂火腿吃什麼 瀏覽:1404
巴西土地面積多少萬平方千米 瀏覽:1265
巴西龜中耳炎初期要用什麼葯 瀏覽:1228
國際為什麼鋅片如此短缺 瀏覽:1631
巴西是用什麼規格的電源 瀏覽:1454
在中國賣的法國名牌有什麼 瀏覽:1357
在菲律賓投資可用什麼樣的居留條件 瀏覽:1267
德國被分裂為哪些國家 瀏覽:876
澳大利亞跟團簽證要什麼材料 瀏覽:1207
德國大鵝節多少錢 瀏覽:875
去菲律賓過關時會盤問什麼 瀏覽:1198
澳大利亞女王為什麼是元首 瀏覽:1024
有什麼免費的韓國小說軟體 瀏覽:756
申請德國學校如何找中介 瀏覽:663