导航:首页 > 澳大利亚 > 澳大利亚超特粉是哪个矿山生产

澳大利亚超特粉是哪个矿山生产

发布时间:2023-04-18 07:55:21

⑴ 铁矿石中,PB粉、杨迪粉、超特、巴粗、巴粉、印粉都是指什么矿石,具体有什么区别

超特都是属于澳洲的矿石 ,澳洲主要都已矿山名字命名或者已地区名字命名PB61的固定品味 杨迪 57、58 超特是 56 (全称是火箭超特粉) 巴粗 和巴粉是一样的 主要是指巴西的。

⑵ 澳大利亚金矿

澳大利亚金矿勘查自20世纪80年代初以来取得了突出成果。20年里发现8000吨金,90年代新发现了一些重要金矿床。最近几年金矿勘查仍在积极进行,项目多,也有不少发现。工作最多的是在西澳太古宙耶尔冈地块,卡尔古利、沃拉顿、里奥诺腊、杨达尔、散德斯通、南克罗斯、维卢纳附近仍不断有绿岩带金矿发现。卡尔古利金矿田自1897年发现以来已采出5000万盎司以上的黄金,早期生产在1903年达到高峰。50年代在高品位井采矿资源枯竭后生产几乎停息。随着金价上涨,80年代矿区复活,这时主要是合理化的大规模露采和先进的选矿技术的生产应用。在卡尔古利沿着“金英里”以前井采的一些矿床建成了“超大金坑”露采矿山。1989年开始开采,采坑最终长要达3.8公里,宽1.35公里,深逾500米。2004年该矿山产金27.6吨,还有剩余储量约1040万盎司(金品位2.2克/吨),至少可采13年。此外还有大量金资源。卡尔古利区金已采至深达1220米处,采的是“金英里”粗玄岩中的高品位矿体和旁侧的浸染状矿化。卡尔古利东南卡姆巴尔达附近St Ives矿山通过最近两三年勘查,导致发现200万盎司金。2004年还进行了可行性研究,拟开发大的低品位资源。卡尔古利附近Kunanalling矿地的Picante探区钻探发现了新的金矿带,4孔结果见矿2~24米,含金4.1~13.6克/吨。在散德斯通绿岩带东南角默奇逊矿田新发现了Lord Henry和Lord Nelson矿床,已有金资源约32万盎司。在一些老采坑底下、深部、旁侧也在钻探。如在里奥诺腊附近的Gwalia Deep项目,目前已有推测资源720万吨,含金7.4克/吨。其北约35公里的Tarmoola现露采坑西侧,要进行4万米钻探更好圈定花岗岩中金矿化(目前资源为5590万吨,含金1.2克/吨)。维卢纳金矿项目2004年初还幸运地偶然发现了Calais富矿体。维卢纳矿山已开采100多年,采出440万盎司金。矿山有些大而分散的矿体,包括2个3.5公里长的大矿体,各有100万盎司金。多年来有一种假设,认为东部断层带不可能有金矿体,所以一直未真正钻探。2003年才收购此矿山的公司,在钻探时偶然发现该带一富矿体(18米,含26.9克/吨金),现已打到一2公里长矿体,资源可达50万盎司。公司计划该项目金资源要从现有100万盎司增至400万盎司。南克罗斯绿岩带的Nevoria金矿属矽卡岩型,实际包含20多个金矿山(金资源分别有2~41吨),1887~2001年累计产金超过260吨。矿床特征是有高温脉石(富辉石、角闪石和磁黄铁矿),与该克拉通其他地方的含黄铁矿碳酸盐-黑云母、绢云母矿体明显不同,为变质后与花岗岩-伟晶岩侵入体有空间关系的矽卡岩金矿。西澳大利亚黑德兰港东南400多公里的特尔弗(Telfer)大金矿床项目建设在进行。金(铜)矿化产在元古宙变质粉砂岩、砂岩及白云质大理岩中,呈层状、网状和脉状(含石英硫化物脉),铜矿物主要为辉铜矿和黄铜矿。主穹窿构造中的矿化已查明至1.3公里深,西穹窿深至600米。至2003年6月底露采区有确定资源1.7亿吨,含金1.3克/吨、铜0.17%;包括井采资源和卫星矿床在内的推定资源有2.5亿吨,含金1.9克/吨、铜0.2%;还有推测资源1.1亿吨,含金1.2克/吨、铜0.15%。总共有2660万盎司(827吨)金、96万吨铜,矿山寿命20年。该矿床原已知存在,主要矿量是在1998年发现的(近1800万盎司金)。

澳大利亚维多利亚州墨尔本西北历史悠久的本迪戈矿区,奥陶-泥盆纪浊积岩型金矿开采几十年后于20世纪50年代关闭。80年代起重新评价。据2004年报道,新本迪戈项目已有资源3360万吨,可年采160万吨矿石,准备2005年底投产,入选品位12克/吨,可采收金1270万盎司以上。墨尔本西面的东巴拉腊特项目现也有310万吨推测资源,含金11克/吨。该州中部Perseverance租地的Fosterville金矿山现有储量700万吨,含金4.5克/吨;资源2070万吨,含金3.7克/吨。

澳大利亚新南威尔士州奥兰治附近的卡迪亚Cadia地区,在1851年前已有铜、铁、金矿开采,包括大、小卡迪亚矽卡岩铁铜金矿床,以及在斑岩体周边的高品位脉中采少量金,断续进入到20世纪。该区的斑岩金铜矿远景是90年代初以来才充分认识的。二战以后一些公司就在此区勘查,但收效不大。90年代初Newcrest公司的勘查最初也集中在大卡迪亚矿床,在发现于一微弱钾长石化二长岩侵入体中的石英脉伴生的金铜矿化后,很快转至卡迪亚山。于1991~1992年发现了大型的卡迪亚山斑岩型金铜矿化。矿化产在石英二长斑岩中,主要为席状脉,有矿石3.52亿吨,金平均0.63克/吨,含铜0.16%。1992~1993年发现了卡迪亚坑斑岩型矿床。1994年在卡迪亚山矿山旁断层东侧较深处发现了卡迪亚东大型矿床。沿北西向矿化带继续勘查导致在1996年又发现了大型的卡迪亚远东矿床和里奇韦矿床(我们在过去曾对里奇韦矿床的发现做过专门介绍),围岩均为古生代(晚奥陶—早志留世)石英二长斑岩及相邻的火山岩。矿化为脉系、网脉和浸染状矿化。在高品位带,自然金、黄铜矿和斑铜矿是主要矿石矿物。卡迪亚东和卡迪亚远东矿床经最近几年继续勘查,资源翻番,合计有推定的井采资源2亿吨,含金1.1克/吨、铜0.37%;推测资源9000万吨,含金0.85克/吨、铜0.33%;另有可露采的推测资源3亿吨,含金0.46克/吨、铜0.37%。此两矿床总资源有金435吨、铜210万吨。此外,巴里克公司在新南威尔士州的Cowal湖项目(主要是E42矿床),2002年有储量5640万吨,含金1.52克/吨(86吨)。在该州北部的Tooloom矿地的Phoenix项目,进一步钻探证实发现一新区中的露头矿。金矿化产在角砾岩筒内,激发极化测量表明岩筒为一大系统的一部分。所列4孔结果钻到42~63米矿化段,含金1.28~1.58克/吨,并且认为“在澳大利亚所有露头矿床都已发现”的观点是不可接受的。

⑶ 澳大利亚最出名的矿产资源是什么

澳大利亚是全球最大的矿产生产和出口国, 2019年矿产出口2900亿澳元,其中铁矿石和焦炭是澳大利亚的战略资源,也是澳大利亚在国际矿产出口市场和外交上的强硬的底气所在。

澳大利亚是全球第1大铁矿石出口国,每年出口铁矿石10.7亿吨,几乎垄断了全球66%的铁矿石出口量,出口金额1070亿澳元。

世界4大铁矿石矿业巨头,3家在澳大利亚:BHP, RIO, FMG。

澳大利亚的铁矿石真正可以称得上是价廉物美。澳洲的有以下5个优势:

1. 品位高,62%。

2. 开采成本为低。

其中FMG 为每吨13美元,BHP 和RIO 为每吨16美元。而中国的铁矿石品位低,开采成本超过每吨70美元。

3. 国际售价低,出场价为每吨在78-81美元。在中国市场的到货价约为105美元。

4.供应稳定可靠。

5. 出口到亚洲尤其是中国的运费低,时间短。

所以每当我看到要制裁澳大利亚或澳大利亚要断供,印度笑了等等此类战狼文章,我都为作者的爱国情怀和无知无谓而感动。

澳大利亚每年出口1.8亿吨炼焦煤met coal or coking coal,占全球50%,价值300亿澳元。

澳洲的焦煤价廉物美,每吨出厂价100美元,在中国市场售价每吨1200人民币,中间差价70美元。澳洲的焦煤算算廉价甩卖。

除了铁矿石和焦煤以外,澳大利亚每年还出口 500亿澳元的天然气,超过卡塔尔,全球第1。

澳大利亚每年生产黄金420吨,价值300亿澳元,超过中国,全球第1。

澳大利亚每年出口发电煤2.1亿吨,全球第1。

澳大利亚每年出口精铜93万吨,96亿澳元。排在智利,秘鲁之后。

澳大利亚每年出口镍28万吨,45亿澳元。

澳大利亚的镍储藏量2500万吨,占全球储量的25%。

澳大利亚每年的锂矿和铀矿出口,全球第1。

澳大利亚的稀土储量和产量,全球第2。

作为一个仅仅只有2550万的人口小国,而陆地面积769万平方公里,海域面积1700万平方公里的庞大国家,澳大利亚也许是地球上最幸运的国家。

澳大利亚每年出口牛肉100亿澳元,全球第1。

经常会看到澳大利亚人口少的原因是因为全澳可适宜人类居住的面积只有26万平方公里,全澳70%是沙漠和半沙漠,我再次为作者的爱国情怀和无知无谓而感动。

事实是:澳大利亚的沙漠面积占18%。全澳能够容纳的人口至少超过1个亿。澳大利亚每年散养的农业GDP是600亿澳元,而其中80%,约480亿澳元是出口的。

澳洲的农业出口和GDP 20年来一直保持在450-600亿澳元,几乎没有增长。

没有增长的原因是澳洲每年的农业产量远远超过目前的人口需求,导致20多年来农产品几乎没有涨价。

2017年前,澳洲每年的100亿澳元的牛肉出口

中,美国韩国日本占了70%,而对中国的出口每年不到1亿澳元。最近2年,澳洲对中的出口增加了50倍,达到了25亿澳元。

⑷ 请问澳大利亚铁矿石都有那些分类如Pb粉,Pb块,罗泊河矿等,它们的具体指标典型值分别是什么

澳大利亚一是BHP铁矿有限公司。BHP公司的矿山位于澳大利亚西部皮尔巴拉地区,分别是纽曼、扬迪和戈德沃斯。这三个矿区的总探明储量约为29亿吨,铁矿年产量总和超过7000万吨。在亚里南部,还有未开发的C采区,保有储量45亿吨。所有矿山生产的铁矿石都通过长426公里的铁路线运输到黑德兰和芬尼康岛的港口混匀,再装船外运到国际铁矿石市场销售。二是哈默斯利铁矿有限公司。哈默斯利铁矿有限公司是澳大利亚第二大铁矿石生产公司,在西澳皮尔巴拉地区有五座生产矿山(即汤姆普赖斯铁矿、帕拉布杜铁矿、恰那铁矿、马兰杜铁矿、布诺克曼第二矿区),探明储量约为21亿吨,公司铁矿年生产能力为5500万吨。预计在建扬迪采矿工程完工后,该公司铁矿年生产能力将达到6500万吨以上。该公司所有生产矿山生产的铁矿石都通过铁路线运输到丹皮尔港口混匀,装船外运国际铁矿石市场销售。三是罗布河铁矿联合公司。罗布河铁矿联合公司是澳大利亚第三大铁矿石生产公司。该公司的铁矿资源集中在潘那瓦尼加附近的罗布河谷,矿脉延续近100公里,估计褐铁矿储量30亿~40亿吨。现生产矿山位于罗布河谷的MesaJ矿区,目前公司铁矿年生产能力为3000万吨。其建在MesaJ矿区的洗选试验厂完成了为生产低AI0203的球团料的试验。其在西安格拉斯矿床有含铁大于60%的铁矿储量7亿吨,可作为球团矿的原料,设计的铁矿年生产能力为800万~1000万吨,正在完成可行性研究,有望近期开发建设。

⑸ 澳洲金矿选矿厂实战分析

金田公司于2001年12月从WMC资源有限公司购买了圣伊维斯矿山。在购买后,他们立刻开始着手提高现有选矿厂的处理能力和减少单位操作成本工作。在详细分析选矿方案之后,放弃了原有的选矿厂,推荐建设一座新的具有更大处理能力的选矿厂,因为一个新的选矿厂可以具有更经济的选择方案。这个选矿厂建在离主要的未来矿石资源地很近的地方。选矿厂靠近未来矿石资源地对运输成本的降低很有好处。设计一个新选矿厂具有更多的灵活性,以便将来更容易扩建它。在12个月内建成了勒夫诺伊选矿厂,并完成了主要的试生产工作。在投产后的很短时间内,选矿厂就达到设计的生产能力和设计的金回收率。在关键的设计目标达到后,就对选矿厂冶金过程进行优化研究。执行先进的控制策略可以大幅度提高选矿厂指标。

01



背景

圣伊维斯黄金采矿公司有勒夫诺伊金选矿厂和一个金堆浸设施。勒夫诺伊金选矿厂年处理4.8Mt高品位含金矿石,每年可产出48万盎司黄金。堆浸设施年处理2.5Mt低品位含金矿石,年产45万盎司黄金。圣伊维斯金矿山勒夫诺伊金选矿厂是澳大利亚第三大黄金生产矿山。

02



位置和矿物学

勒夫诺伊选矿厂位于勒夫诺伊湖旁,大约位于澳大利亚东金矿田Kambalda镇东南部20km处。在圣伊维斯矿床中,金大都以粗粒到中等粒度的矿物或自然金沿着矿物相交处产出。在大多数矿床中见到金合金(如金银合金)和含金矿物(如碲金矿和黑铋金矿),虽然数量比较少。在一些矿床中,大约有10%~20%金以细粒包体存在于硫化矿物(例如黄铁矿和磁黄铁矿)中。粗磨很容易使金与脉石矿物单体解离出来。应用重选法、硫化矿精矿细磨和氰化工艺可获得比较高的金回收率。

03



选矿厂描述

勒夫诺伊选矿厂接受几个露天采场和地下矿井采出的原矿。露天采场矿石通过140t的CAT785型自卸矿车运送到破碎机给矿垫上。地下矿井采出的矿石应用安装在侧向翻笼内的105和120t牵引车运送到破碎机原矿垫上。过量的矿石单独堆在原矿垫上,稍后再用前端式装载机给到破碎机中。直接翻卸矿石是往破碎机给料的首选方法。位于粗粒矿石堆场附近的细粒软矿石堆垫常用来贮存黏性矿石,例如湖泊沉积物、流动性好的氧化矿、磨矿机大矿块和选矿厂溢出物料。

来自软矿石堆场的黏性物料通过软矿石仓和一台与粗碎机和粗矿石堆场旁路的板式给给机给到磨矿机中。这样可以通过缩短由于黏性矿石阻塞而引起的停工时间,来确保粗碎机的最大处理能力。当粗粒矿石堆场中的矿石水平较低的时候,软矿石仓也可以当作紧急给料机使用。粗碎机配备有碎石机,碎石机用来破碎和清除粗碎机破碎腔中形成的岩石“搭桥”。破碎后的矿石通过短皮带运输机和较长的堆场给料皮带运输机运到粗粒矿石堆场上。

在这两台运输机转移点处,安装了聚乙烯导管拣选器和一块磁铁,聚乙烯导管拣选器用来除去长的聚乙烯导管,磁铁用来除去残留的废金属。磁铁能够除去金属丝、长的螺栓和矿井中所用的钻杆片。粗粒矿石堆场用金属护板掩盖,以便减少由粗矿石堆场散发出的灰尘,为职工提供一个无灰尘污染的环境,和保护安装在半自磨机电动机上的敏感的电子设备。

粗粒矿石堆场的总容量大约为77万t。每台处理能力为800t/d的3台板式给矿机将粗粒矿石给入半自磨机中。每台给矿机安装了过程摄相机,用来监控运输斜道上的阻塞情况。磨矿机给料皮带运输机安装了Visio Rock图像分析系统,来监控给入半自磨机中的给料尺寸。半自磨机是一段大径长比半自磨机,它由一台13MW可变速无齿轮电动机驱动。

半自磨机排出的矿浆流经一台8.6m×3.7m的振动筛,以对矿浆初步分级和除去过大矿石块。大的矿块在紧急情况下被卸到地面上,或者通过一台砾石破碎机破碎后返回到半自磨机里。大矿块也可部分或全部旁路通过砾石破碎机。大矿块皮带运输机安装了磁铁和金属探测器,以保护砾石破碎机不被金属碎块破坏。自磨机排出的筛下产品给到一组10台直径为20英寸的Krebsg Max型水力旋流器中。约30%的旋流器沉砂给到两个独立且平行的重选回路中。所有旋流器沉砂都返回到半自磨机给矿中。

重选回路由2个平行的SB2500Falcon分选机和2个平行的IPJ2400在线压力跳汰机组成,以回收硫化矿物。VTM-500型细磨矿机可使JIG跳汰机精矿中的金与硫化矿物解离。用ILR3000BA型强化浸出反应器从重选精矿中强化氰化浸出金。重选回路中的全部尾矿也给到半自磨机给料箱中。选矿厂碎磨回路详情如图1所示。

04



选择一段半自磨回路的决定

预可行性研究确定了扩建现有选矿厂和建立新选矿厂的几个可能的工艺流程方案。每个工艺流程选择的基本投资和运行费用精度在±30%左右。最后决定,一段半自磨方案优于其他所选择的方案,尽管它在工业上存在一些缺点。在建立勒夫诺伊金选矿厂之前,圣伊维斯黄金采矿公司已经经营一个处理能力为3.1Mt/a的选矿厂,但这个选矿厂现在已经停产了。按SABC模式(半自磨-球磨-砾石破碎流程)运转的老选矿厂的第二段破碎给矿的平均粒度为F80=40mm。在老选矿厂中对粗粒矿石进行了两天试验,并收集有关数据,以作为驱动JKSimMet磨矿回路模型的基础。这个试验成果已在2001年自磨机会议上提出了。应用老选矿厂磨矿回路的JKSimMet模型作为评价新选矿厂设计所选工艺流程的基础。被评价的整个工艺流程的选择方案有:

1)安装第二个平行磨矿回路,以改造老选矿厂;

2)用一台较大的一段半自磨机代替SABC磨矿回路来改造老选矿厂;

3)建造一个包括有三段破碎和常规球磨回路的新选矿厂;

4)建造一个包括有一个处理能力为4.5Mt/a的SABC回路的新选矿厂;

5)建造一个包括有砾石破碎的直径为36英尺高径长比的一段半自磨机的选矿厂。

方案1和方案2的变化是用两段或三段破碎将磨矿机的给矿破碎到较细的粒度。除了方案3外,一些方案还包括砾石破碎和/或预先筛分(在半自磨之前)。在做最终决定时,应用了以下的标准(其顺序不存在主次关系)。

1)每个所选方案增加的费用(使用NPV(净现值)和IRR(投资内部回收期));

2)技术方面的风险性;

3)与将来矿石资源地是否靠近;

4)可运行性和可维护性;

5)将来扩大的潜在性;

6)职员对每一个加工流程方案的熟悉程度和经验的积累的多少。

根据上述标准评价,方案1和方案2比其它方案在大多数情况下没有多大的好处。老选矿厂与未来矿床之间的距离对方案的选择起了负面影响。尽管方案5满足了其它所选择的标准,但由于它具有一些明显的缺点和自身的技术风险性,所以最初就没有将它列入最终选择表格中。在方案选择研究中,对方案3和方案4进行了较详细的分析。这两个方案的研究结果是相近的,仅从经济(NPV/IRR)方面考虑,选择了方案4,而抛弃方案3。在考虑所有选择标准和它们的所占的权重,对方案4进行了详细的可行性研究。精度±10%的详细可行性研究结果表明,方案4不能将操作费用降到预期的值。方案5具有一定的技术风险性,最初一直拒绝选择使用,但后来对它进行评价。尽管方案5自身存在技术风险性,但由于以下原因,最终还是选择了方案5:

1)由于不需要为制造新磨矿机而拖延时间,使得项目交付时间表提前很多。圣伊维斯黄金采矿公司以前曾定购了一台新的直径36英尺的半自磨机,这台半自磨机是由原来的所有者WMC资源有限公司于1997年初为扩建选矿厂设计和定购的;

2)较低的基本投资;

3)在老选矿厂中用直径24英尺的磨矿机对粗粒矿石进行了试验,因此应用直径36英尺的半自磨机的技术风险实际上降低不少;

4)一台半自磨机仅意味着操作和维护一台设备;

5)对选矿厂将来的扩建具有很多优势。

05



设计考虑

为了设计,需要对未来的所有矿石的传统邦德球磨矿机和棒磨矿机功指数(BWI和RWI)以及JK半自磨机破碎参数进行测定。JK半自磨机破碎参数由改进的落体重量试验(SMCC方法)测定。用JKSimMet模型对磨矿回路进行模拟,以对不同的情况进行分析和预测。半自磨机破碎参数如表1所示。

06



磨矿机的关键风险及对其操作的影响

【过程的不稳定性】所有的大矿块(破碎的或未破碎的)、旋流器沉砂、重选回路尾矿、磨矿和重选区域所有溢出物、清洗水以及破碎和泵池的清理物均进入半自磨机给矿中。由于矿浆泵的开启和关闭,以及一个或多个循环负荷的干扰,会引起过程不稳定。给矿粒度和硬度的变化也会使磨矿过程不稳定。毫无疑问,给矿粒度(F80)、矿石硬度、给矿速率和钢球添加量对开路半自磨机的操作性能的影响也得到了证实。

因此,勒夫诺伊选矿厂的一段半自磨回路的这些参数发生大的波动也是合情合理的。在设计阶段就注意到这些参数可能有很大的影响。一个固有的不稳定回路(磨矿处理量和磨矿粒度)会对下游过程起很大的负面影响,从而影响选矿厂的回收率和现金流。这种波动也会对关键加工设备(如旋流器给矿泵、皮带运输机、砾石破碎机、主驱动系统和隔粗清洗筛)的操作有负面影响。反过来,这将会增加这个设备的维修成本。在破碎机前对给矿进行配矿是不现实的。在破碎回路和粗粒矿堆场中矿石会发生很小程度的混匀。通过粗碎给矿机也可能会影响矿石的混匀程度,特别是对给矿粒度。

但是,所有这些参数的影响不能替代在原矿衬垫上较好的混合。矿石从采矿场直接运到选矿厂堆存而不进行配矿,一般是根据运输物料需要花去更多费用。矿石的再运输费用很容易量化。因此,这些费用是削减成本中最容易被选定的目标。那些不容易量化的费用是那些未混匀的矿石在选矿厂下游处理中所花去的费用。

这需要长时期的辛勤工作,以收集所有相关的资料,找出主要的变量,以证明未混合矿石对分选的影响。圣伊维斯矿石的硬度(以JKSAG参数A*b表示)的分布情况如图2所示。从该图可以看出,矿石的硬度在极软变到极硬的很大范围内变化,这与给入选矿厂的矿石性质有关。矿石硬度(粒度)的瞬时变化对设备操作员要满足碎磨产品要求提出了挑战。

在选矿厂设计中对配矿未提出要求。但是,需要采用以下措施使矿石类型的变化对磨矿的负面影响降到最小:

1)根据给矿硬度和粒度的变化来调节钢球的添加量,以减少矿石性质变化的负面影响;

2)改变磨矿机的操作条件,如根据磨矿机的总负荷来调节磨矿机的转速和钢球与矿石的重量比;

3)应用砾石破碎;

4)对过程进行控制:当所有的再循环载荷返回到磨矿机的时候,给料性质的波动将对磨矿机的负荷、大矿块含量、循环负荷、旋流器溢流密度、最终产品粒度和分级效率产生影响。因此,使用一个好的控制策略将给料性质变化的负面影响降到最小是很有必要的。

【矿浆积水化风险】矿浆积水化(Pooling)也是一个关键风险。矿浆积水化对磨矿机的负荷、磨矿机的驱动功率和磨矿粒度的稳定性存在很大的有害影响。如果操作条件不正确和矿浆提升器设计不正确的话,磨矿机就会在矿浆积水化边缘条件下运行。设计的焦点放在两种不同类型的矿浆提升器上:

1)径向矿浆提升器;

2)螺旋状矿浆提升器。一些大规格的开路半自磨机安装了螺旋状矿浆提升器,据报道说,它有令人满意的效果。

从设计上来看,这两种矿浆提升器都有各自的缺点。螺旋状矿浆提升器需要单一方向的衬板/提升器。尽管它们具有较好的排矿特性,但由于磨矿机单方向旋转,衬板的消耗量更大。螺旋状矿浆提升器不允许磨矿机在受载情况下两个方向运行。这是未来工程学和安全保障所关心的地方。假若有足够的空间(厚度方向),可以安装径向矿浆提升器,径向矿浆提升器可很好地从磨矿机中排出矿浆。由于磨矿机可以两个方向模式运行,所以,它们可延长衬板/矿浆提升器的使用年限。

【缺乏一段半自磨机的操作技术专家】为了克服这个风险,要对选矿厂职员广泛地进行技术培训。

【勒夫诺伊选矿厂没有安装浸出浓密机】依据操作条件不同,磨矿粒度与矿浆密度通常呈相反的关系。为了使这两个参数都保持在所要求的水平上,需要借助过程控制系统来熟练地操作磨矿回路。磨矿粒度过粗,会降低金属回收率,而矿浆浓度过稀,会缩短矿浆在浸出槽中的停留时间,从而降低金的浸出率。应用一个好的过程控制策略,可以消除这种风险。

07



投产试车

磨矿机湿式试运转先从全自磨模式开始。钢球添加量从0%分三段增加,即从4.2%,到6.2%,最后到8.0%(表2)。随着钢球添加量的增加,磨矿机生产能力增加。在钢球最大添加量为8.0%时,磨矿机生产能力可以达到546t/h,这个生产能力仅仅比551t/h的设计生产能力低一点。

如表2中所示,此时排料格子板没有发生变化。随着钢球添加量的增大,大矿块排出量占新给矿的百分比逐渐降低。在全自磨模式下,大块矿的比例是很很高的,经常大于100%。当装球量达到8.0%时,仍有一半的给矿作为大块矿石返回到磨矿机中。大矿块对给矿的百分比在大多数情况下为47%,在8.0%的装球量情况下,大块矿石的量为269t/h。这仍然高于设计所规定的目标,但长期这样运行,对所安装的砾石破碎机处理能力不一定受得了。在8.0%的装球量下,大块矿的量一般以60%偏移量波动。这反过来影响了大矿块的运输能力,使大矿块散落在选矿厂中。当大矿块排出量超过砾石破碎机处理能力时,它们经常要旁流于砾石破碎机。磨矿机的转速不能高于9.3r/min,这样又增大了大矿块的排出量。太高的大矿块排出量会堵塞半自磨机排矿筛,或损坏筛面。这也会引起大量的过大矿块旁流到旋流器给矿斗中,堵塞旋流器给矿管和矿浆泵,从而导致长期的停车。

因此,磨矿机不能在10.4r/min(80%的临界速度)全速下工作,除非大矿块量易于控制。较高的装球荷负可较容易地控制大矿块的排出量,但其真实的原因是决定于排矿端开孔区域面积,特别是在整个开孔区域中砾石孔所占的比例。因此将总的开孔区域和砾石孔所占比例分别降低到7.4%和20%。在这些水准上,大矿块的排出率减少到28%,使磨矿机的生产能力增加到600t/h以上。

08



矿浆提升器

经仔细考虑后,安装了深度为430mm的径向矿浆提升器。从多次对磨矿机检查来看,矿浆积水化一直不算一个会降低磨矿机处理能力的问题。径向矿浆提升器能很好地将矿浆从磨矿机中排出来。小心的突然停车对磨矿机中矿浆积水化进行了测量。结果表明,磨矿机大多数情况下在矿浆积水化以上或以下水平工作。实际上,突然停止一台负荷和其中矿浆水平没有太大波动的一段闭路半自磨机是很困难的。不过所做的观察结果对磨矿机中所发生的矿浆积水化有了一个清晰的了解。磨矿机矿浆积水化到目前为止还没有对旋流器循环负荷产生严重的问题。在试验的所有条件下,旋流器的循环负荷没有超过250%。

09



磨矿机性能

从磨矿机试车后一直到2006年4月第一次完全更换衬板时期,磨矿机的处理能力如图3所示。第一个时期描述了由于试车,特别是调试磨矿机排矿端,磨矿机处理能力未能达到设计要求。一旦砾石排矿口和开孔区域问题解决了,磨矿机的处理能力就达到设计生产能力。一直到更换全部衬板时,磨矿机处理能力都能够保持在设计生产能力之上。曲线第三段代表磨矿机生产能力下降期,这主要是由于破碎机衬板严重磨损和矿石硬度增大,较粗的矿石进入磨矿机中引起的。

10



磨矿机衬板

除了给矿端中部衬板和外部衬板外,其它所有衬板均表现的很好。在处理2.1Mt矿石后不得不更换给矿端衬板。通过增加提升器高度和加大相对给矿端提升器的角度,来改变提升器的外形。在更换全部衬板时,更换第二批给矿端衬板。在处理完5.6Mt矿石后(15个月的运转期),更换筒体部位衬板、排矿端衬板和格子板。在将来更换内部衬板时同时对给矿端衬板和提升器的外形再次进行修改。衬板具有较长的使用寿命有两个主要原因,即磨矿机在较小的装球量和矿与钢球负荷比较低的条件下运转。磨矿机通常在8%的装球率和28%的总负荷下运转。

11



半自磨机排矿筛

半自磨机排矿筛由Shenck公司供应。筛分机上的前三排是冲击面板,其余的是带孔的面板。带孔面板是易于自清理类型的。用于运输的冲击面板和前四排带孔的面板不能幸免严重的冲击和磨蚀操作条件,因此很快损坏。这样使得大量的大矿块旁路到排料斗中,并将其填满,堵塞旋流器给矿泵和给矿管。过量的大矿块的产生导致筛分机堵塞。对冲击面板和带孔面板改进后,大大延长了面板磨损寿命,减少了无计划的停工的时间,这是值得关注的改进。

12



给矿粒度的影响

软的粗粒给矿对磨矿机处理能力的影响比硬的粗粒给矿的影响要小。除去对磨矿机处理能力影响外,它还有其它一些影响。大而黏的矿块会在运矿槽中形成搭桥,堵塞运矿槽,使磨矿车间停产。实践表明,破碎细矿石,特别是破碎硬的细矿石是很重要的。给矿粒度对磨矿机生产能力的影响如图4所示。在上述图所描述的整个阶段内,砾石破碎机均运转。在此期间,矿石类型没有什么变化。因此磨矿机生产能力的影响完全是由给矿粒度变化引起的。在这个阶段中,给矿的平均粒度(F80)为131mm。细粒给矿粒度F80为103mm毫米。给矿粒度从131mm变化到103mm,使得磨矿机平均生产能力从533t/h提高到599t/h。

1-给矿量;2-给矿粒度(F80)

13



砾石破碎的影响

砾石破碎对磨矿机生产能力的影响实例如图5所示。砾石破碎机不工作时,磨矿机不能维持高的生产能力。钢球添加率已经最大化(大约为11%),以此来中和较硬矿石的影响。砾石破碎机不工作期间的特点是,返回到磨矿机的大矿块量波动大。显然,在砾石破碎机工作的情况下,磨矿机工作更稳定。在该图所显示的整个阶段,磨矿机都是自动控制的。将减小磨矿机重量自动控制响应定为控制策略,以增大给矿速率。磨矿机转速已经达到了所允许的最大水平,所以已经没有空间再增加转速了。

在砾石破碎机开启的情况下,返回磨矿机中的大矿块的比例开始减少了。这就产生了通过减小大矿块产生率和磨矿机负荷来增大磨矿机的生产能力。在砾石破碎机不工作的情况下,磨矿机的平均生产能力为482r/h,平均大矿块率为32%,并且这个百分数波动很大。在砾石破碎机启动以后,磨矿机的平均生产率达到584t/h,平均大矿块率降低到27%。

1-给矿量;2-F80

14



过程控制

磨矿机最初试车的控制策略是最基本的策略。它没有考虑到边界、过程变量相互作用及其对过程的影响。磨矿机的操作要求控制室里的操作员精细的监管。从控制点来看,效率是不高的。磨矿回路的不同部分彼此之间的控制通讯不畅通。给矿机控制、砾石破碎机控制、分级控制和半自磨机控制都是独立的,且没有考虑到相互之间的作用。过程输出变量的相容性和稳定性都不能很容易达到。

这导致磨矿机负荷、生产能力、磨矿粒度和旋流器溢流密度波动很大,因而,对下游加工过程起负面影响。在试车成功后,就需要用更高级的控制策略(MantaControls立方控制技术)来代替磨矿机的初始控制策略。新的控制策略可以大大减少操作员对磨矿机回路大强度的监管,允许操作员把精力集中到选矿厂其它更重要的任务上。磨矿回路的控制目标如下:

1)磨矿粒度(P80):最大磨矿粒度125μm;

2)旋流器溢流密度:45%~50%;

3)在旋流器溢流密度和磨矿粒度达到要求时,磨矿机生产能力最大化。由于下游过程的限制,磨矿机的最大生产能力也需要限制。

另外,下列的控制目标由磨矿区域的冶金学家设定和管理,因为立方控制没有对它们进行设定和管理:

1)不同类型的岩石与钢球重量比的优化和管理;

2)优化磨矿粒度。这意味着破碎粗粒软矿石和/或将部分或全部软矿石旁流于砾石破碎机。

3)在保证关键分级目标(P80和旋流器溢流密度)的前提下提高分级效率。

所有的关键操作设定值目前都是由冶金学家确定的。过程控制的下一步是执行一个更先进的控制策略来不断地优化这些设定值。

在执行立方控制策略后,旋流器溢流性质改进了。隔粗筛上矿浆波动和溢出现象消除了。下游过程(浸出和吸附)运行得很好,金的总回收率得到提高。

目前,用旋流器压力和给矿密度作为旋流器的变量,用来控制旋流器溢流密度和磨矿粒度(P80)。为了更好的控制磨矿粒度,需要对旋流器压力和给矿密度正确设定,并且要在这个设定值左右精确控制。根据操作数据,建立了旋流器溢流密度与磨矿粒度(P80)之间的相反的相关性(图7)。利用这种关系和控制旋流器压力和给矿密度,就能够将磨矿粒度控制在目标范围内。因为只要P80处在目标范围内,金的回收率就会变化不大,所以,此时就没有必要对磨矿粒度进行精确控制。旋流器压力和给矿密度的立方控制影响如图8所示。新的控制方式大幅度改进了对旋流器压力和给矿密度的控制。反过来又提高了旋流器溢流的密度。

15



结论

勒夫诺伊公司一段半自磨机试验投产很成功。所有的设计目标在试车后的短时间内就得以实现,目前磨矿机运转良好。磨矿机生产能力超过设计能力。在操作条件下磨矿粒度一直变化,但总是在目标范围之内。勒夫诺伊公司磨矿机的操作情况如图9所示。正如从该图所看到的,它比世界上其它的开路和闭路一段半磨矿机的指标要好。

在勒夫诺伊选矿厂,已经根据直径24英尺的半自磨机操作数据,按比例放大为直径为36英尺的半自磨机,而不需要进行繁杂的扩大试验。输入未来矿石的破碎参数和应用先前对磨矿回路所建立起来的JKSimMet模型,就可以方便地对磨矿回路进行设计和广泛的分析。在详细设计阶段,要是能够尽早识别磨矿回路的潜在风险,那么就可关注这些风险。

需要研究制定新的策略,以便克服这些潜在的风险。矿浆积水化、磨矿回路的不稳定性、技术和操作专家的缺少、没有浸出给矿浓密机和没有砾石破碎机都是风险。假若设计的径向矿浆提升器有足够的容量,便能有效地消除矿浆积水化带来的负面影响。

在分级回路之后如果没有浸出给矿浓密机,由于旋流器沉砂返回到磨矿机和分级回路中,因此磨矿机回路操作指标(密度和磨矿粒度)会变坏。试车开始时认识到磨矿机的工作曲线是很陡的。这表明,磨矿机试车阶段执行的策略是不适当的。因此需要制定一个更高级的过程控制策略。

选矿厂所有工作人员(冶金学家、操作和生产人员和电器维修人员)与专家一起来执行这个过程控制策略。这对过程是有很大好处的。成功优化的关键不仅要有各个方面的技术人员,而且还需要行政人员对此接受和承认。这样可确保每个人都能对过程优化做出贡献,并且一开始对此就有信心。

很多过程控制系统不是在过程现场设计的。控制系统设计好后作为黑箱系统来执行。操作员和选矿厂技术人员(冶金方面、电器和仪表方面人员)或许不能很好了解它们是怎么工作的。当系统开始频繁的出问题的时候,他们不能及时维护来解决这些问题。人员积极性的受挫使这些系统更容易失效。

执行一个好的控制策略,就会消除过程变量的波动。通过执行专家控制系统(已有的或立方控制系统上自带的),过程带来的利润可能更多。选矿厂的冶金过程的优化是很重要的,因为过程控制不仅产生所要求的结果。将来完成以下方面的工作会给过程带来更大的利润。

1)对矿山到选矿厂进行优化,其中包括爆破破碎和执行原矿配矿策略;

2)执行专家控制系统,连续对过程设定值进行优化;

3)使用新型在线矿浆密度仪对旋流器溢流密度进行控制。

位于澳大利亚卡姆巴尔达的圣伊维斯金矿山勒夫诺伊金选矿厂一段半自磨回路的投产与优化

——Y·阿塔索伊等

~~~~~~~~~~~~~~~~~~~

——原文发表在微信公众号《四方谈》(微信ID:WorldMining,《四方谈》原名《矿业澳洲》)

——鸣谢《澳玉四方》(Wechat ID:JewelryAtlas),有特别好的澳玉原石。

——鸣谢天然澳玉淘宝店《异珍阁澳玉四方》。

——鸣谢健康捍卫者《健康橡树屋》(Wechat ID:Oakhome)。

⑹ 澳大利亚兰杰矿床

1.矿床位置及研究小史

兰杰铀矿床是世界驰名的超大型铀矿床之一。它位于澳大利亚北部东阿利盖特河上游,达尔文市东约225km处的马格拉平原上,海拔高度约为+20m。经纬度坐标是东经132°55',南纬12°40'~12°43'。它主要由1矿段和3矿段组成。

该矿床的大地构造位置,前人归为派因—克里克地槽区。按地洼学说,矿床现阶段的大地构造性质应归为地洼区,属澳大利亚壳体南北地洼带内的阿纳姆地地洼区(图5-19)。该地洼区形成于中元古代初期,在太古宙为前地槽阶段,古元古代(2500~1700Ma)为地槽阶段,到古元古代末至中元古代初可能有短暂的地台阶段(1700~1650Ma),至中元古代初期转入地洼阶段(1650Ma至今),并延续至今。该矿床的工业铀矿化,主要形成于新元古代至早古生代(900~500Ma),属地洼阶段中晚期成矿。阿纳姆地地洼区,按构造-岩浆活化程度划分,属火山-构造活化型地洼区,其突出特点是火山-构造强烈发育,铀成矿作用与火山-构造活化作用有着时空联系,但该矿床又不产于火山岩内,故不属于火山岩型铀矿,而属于层控中的不整合铀矿床。

图5-19矿床大地构造位置图

1.南北地洼带;2.地洼区:A.阿纳姆地地洼区;B.卡奔塔利亚地洼区;C.芒特—艾萨地洼区;D.推测的覆盖地洼区;E.布罗肯希尔地洼区;F.阿德莱德地洼区;3.铀矿床:①兰杰铀矿床;②贾比卢卡矿床;③纳巴勒克矿床;④奥林匹克坝矿床

该矿床于1969年初由Geopeko有限公司在布罗克曼山的低地发现,先是圈定了6个放射性异常,后在1号和3号异常上施工钻探工程,共打13个钻孔,结果在地表和深部200处都见铀矿化。直至1980年初,在1号和3号异常内分别落实为1号和3号矿体,1号矿体的估算平均品位为0.33%U3O8,铀储量达52878tU3O8,3号矿体平均品位为0.20%U3O8,储量达58000tU3O8。从而矿床总储量超过110000tU3O8,平均品位为0.26%,矿体集中,规模大。矿石中伴有金,其平均品位为1.3g/t,金储量为2.5t。

G.S.Eupen和B.T.Williams最先研究了兰杰1号矿段,G.R.Ewers,J.Ferguson,R.S.Needham,T.H.Donnelly等人,先后系统地总结和研究了该矿床的区域成矿条件及矿床地质特征。对矿床成因主要存在两种不同观点,一种是同生沉积,后生成矿观点,认为铀是古元古宙岩石沉积期形成,在后来的构造和变质作用下再次迁移和重新富集成矿。另一种是后生成矿观点,认为太古宙花岗岩铀含量高,在构造和变质作用下铀重新活动,进入到良好的角砾岩化带的矿捕环境富集成工业矿床,同古元古代沉积和岩层变质作用无关。H.11.拉维洛夫,С.Ф.维诺库洛夫在研究澳北铀矿床后,提出多期成矿叠加富集的复成因观点。

本书作者查阅和研究了该矿床的有关地质资料,按地洼学说及其多因复成成矿理论,以及王志成高级工程师1993年在该矿区较长时间的考察收集的最新资料,认为兰杰铀矿床属典型的多因复成铀矿床,派因—克里克地槽是古元古代形成,至中元古代已转化为阿纳姆地地洼区,一直延续至今。

2.矿床地质特征及其多因复成依据

1)矿区地层及含矿主岩

矿区露头极为有限,人工揭露的地层,有太古宙片岩、片麻岩及花岗岩组成的纳纳姆布杂岩,古元古代绿泥石片岩、碳酸盐岩、燧石岩、石墨片岩组成的卡希尔组,以及中元古代砂岩、砾岩组成的科姆波尔吉组。古元古代地层倾向东,倾角为35°~550,其变质程度介于绿色片岩相至低级角闪岩相之间。铀矿化产于古元古代卡希尔组中(图5-20)。

纳纳姆布杂岩之上为卡希尔组,并以不整合形式覆盖,而中元古界科姆波尔吉组又以不整合形式覆盖于卡希尔组之上。纳纳姆布杂岩中的片麻状花岗岩,其同位素年龄为2.8~2.4Ga。

含矿岩系属卡希尔组下段,在地层剖面中相应的自下而上层序是:下盘岩系→下含矿岩系→上含矿岩系→上盘岩系,共为4部分组成。下盘岩系主要是石英-云母片岩和绢云母-石英长石片麻岩组成,经约1800Ma前的强烈变质作用所致,岩层时代有可能归为新太古代。下含矿岩系在卡希尔组的底部,是古元古代最早的岩层。它由中细粒块状菱镁矿、白云石大理岩、绿泥石绢云母片岩和白云质大理岩及燧石岩层组成,厚度共为250m。在其中部约20m厚的绿泥石绢云母片岩内,分布有铀矿化。上含矿岩系,在卡希尔组中下部位,由黑云母-石英-长石片岩和白云质大理岩、黑云母片岩组成,含有石墨。厚度约为150m,几乎全部岩石都受到绿泥石化。绿泥石化含石墨的黑云母-石英-长石片岩,是该矿床的主要含矿岩石。上盘岩系,由粗粒云母-长石-石英片岩及含有磁铁矿混染的粗粒绢云母-绿泥石片岩组成,还可见新鲜的石榴子石和钾长石,厚度达10m。在上盘岩系内未发现工业铀矿化分布(图5-21)。

含矿岩系的共同特点,是富含碳质和黄铁矿以及碳酸盐矿物,是属浅海相和潮间及潮上沉积环境,其原始铀含量达34g/t,高出地壳平均克拉克值的9倍。矿区内一般地层的铀丰度值也达12~13g/t。这表明含矿岩系在原始沉积-成岩阶段,有铀的原始富集作用,反映了铀成矿作用具有明显的层控特征。含矿岩系沉积阶段的铀,系来自区域内太古宙纳纳姆布杂岩中的片麻状花岗岩类岩石。其平均铀含量达9.6g/t。中元古代科姆波尔吉砂岩和砾岩中,未发现铀矿化分布。

2)矿床构造形态及成矿构造

矿床所在的区域构造,为一个南北走向的复式向斜,兰杰铀矿床位于该复式向斜的东侧。矿区本身为单斜构造(图5-22),岩层向东缓倾,倾角多在30°上下,属次级褶皱构造的一部分。过去资料认为,矿床-矿段中心深部含矿岩系与太古宙片麻岩为断层接触。据王志成现场钻孔岩心观察,含矿岩系之下为整合或假整合接触,而且其下部之岩性层位可能属古元古代砂岩经变质作用形成片麻岩,而不是太古宙片麻岩。矿床深部可能存在卡卡杜群的砂岩层。区域的和矿床的褶皱构造,主要是古元古代末地槽回返期所形成。

铀矿床和矿体定位,首先是受纳纳姆布花岗片麻岩穹隆东接触带的制约。此外,还受到近地表的古元古界褶皱基底与未变质的中元古界之间的不整合面构造,以及东西向、南北向和北西向断裂带,或裂隙密集带的联合控制。矿体位于角砾岩带内,并紧靠古元古代地层与中元古代地层的不整合面之下,体现出铀矿化有明显的后生改造和叠加富集的特点。矿床最主要的1号和3号矿体,埋藏于现代地表之下,埋藏深度浅,并与古—中元古界之间的不整合面相吻合(图5-23)。铀矿化直接产于断裂构造破碎带内或角砾岩带内,断裂构造不仅成为成矿溶液的通道,还为沥青铀矿和绿泥石的富集提供了有利空间。角砾被绿泥石、石英和赤铁矿、晶质铀矿、沥青铀矿、金属硫化物及碳酸盐矿物所胶结。从角砾岩的结构和岩性特征分析,角砾岩至少有两次角砾岩化和两次绿泥石胶结,推测角砾岩最初是古元古代地槽回返之后形成,后来在地洼阶段明显产生活化,形成第二次的角砾岩化和绿泥石化再次胶结。

图5-20澳北阿利盖特河铀矿田地质图

(据R.S.Needham等)

1.中生界;2.科姆波尔吉建造;3.奥思别里粗玄岩;4.造山花岗岩,尼姆布瓦格杂岩;5.花岗岩核;6.混合岩;7.片麻岩;8.过渡带;9.谢依姆粗玄岩;10.芬尼斯河群:菲协尔—克里克粉砂岩,南阿里盖特尔群;11.克帕尔格建造;12.库尔平建造,玛翁特—帕尔特里基群;13.威尔特门粉砂岩,纳乌尔连基片岩;14.曼多施砂岩,纳木纳群;15.斯得克—克里克火山岩;16.麦逊和卡希尔建造;17.卡卡杜群;18.纳纳姆布杂岩;19.断裂及其名称:①基夫—阿杰尔,②纳乌尔连基,③基姆—基姆,④兰杰,⑤玛歇拉,⑥别阿特里杰,⑦布尔面;20.铀矿床名称:Ⅰ.贾比卢卡,Ⅱ.兰杰,Ⅲ.库恩加拉,Ⅳ.纳巴勒克;21.岩层产状;22.背斜;23.向斜;24.倒转背斜;25.倒转向斜;26.倒转岩层产状

图5-21兰杰铀矿床地质平面图

1.科姆波尔吉组;2.下盘剪切带;3.粗玄岩;4.伟晶岩类;5.上盘片岩;6.上含矿片岩;7.下含矿燧石;8.重结晶碳酸盐岩;9.下盘片岩和片麻岩;10.铀矿化地表显示;5~9为卡希尔组

图5-22兰杰矿床3矿段综合地质剖面图

(据R.S.Needham等)

1.伟晶岩;2.上盘岩系的云母-石英片岩;3.上含矿岩系的绿泥石-黑云母片岩;4.下含矿岩系的绿泥石片岩和碳酸盐岩;5.下盘岩系的片岩和片麻岩;6.铀矿体及其界线

3)矿区岩浆岩

矿区内岩浆岩较为简单,只有少量的花岗岩、伟晶岩和粗玄岩分布,它们穿切古元古代地层,使矿区卡希尔组的岩石进一步变质和角砾岩化。花岗岩的年龄为1755~1732Ma,粗玄岩的年龄为1680Ma士13Ma。矿区的粗玄岩,主要是以岩株和岩脉产出,是矿区最晚一期的岩浆活动。侵入中元古界科姆波尔吉组中的粗玄岩,据K-Ar法测定其形成年龄约在1390Ma。此外,在矿区东南40km处的科姆波尔吉砂岩内,还有新鲜的切层玄武岩侵入于砂岩中,其K-Ar法年龄为522Ma。科姆波尔吉底部的红色石英砂岩内,也还有粗玄岩及熔岩流分布,其年龄分别为1680Ma及1650Ma。

矿区的粗玄岩与铀成矿作用关系密切的绿泥石化有关,它可能为矿床的铀成矿作用提供了热能和动力源。在矿体内的伟晶岩内的长石和粗玄岩,均受构造破碎作用,并完全被绿泥石化。伟晶岩的特征是不含铀矿化,受构造剪切处和次生矿化带除外。

4)矿体形态及近矿围岩蚀变

兰杰铀矿床1矿段的形态为向下倾的穿层透镜体,3矿段的形态为缓倾板状至透镜状。两个矿段主矿体埋藏浅,接近地表以下的35m处产出,垂向延深约达200m,矿量集中,平均铀品位达0.26%,矿体规模大。1矿段和3矿段的储量,分别均在50000tU3O3以上。

图5-23澳北兰杰矿床1矿段地质剖面图

(据R.S.Needham,1979;H.П.拉维洛夫,1988)

1.地表氧化带;2.粗玄岩;3.伟晶岩;4.结晶片岩;5.绿泥石片岩;6.含碳绿泥石片岩;7.交代的绿泥石片岩;8.微石英岩;9.重结晶碳酸盐岩;10.绿泥石化碳酸盐岩;11.太古宙结晶基底、结晶片岩、片麻岩、混合岩;12.构造角砾岩和糜棱岩带;13.断裂构造;14.铀矿体;15.推测的不整合面位置

矿床的近矿围岩蚀变作用发育,以绿泥石化与铀成矿的关系最为密切,铀矿体均分布在绿泥石化强烈发育为主的蚀变晕圈内,在下含矿岩系中的花岗伟晶岩,其长石已蚀变成绿泥石,粗玄岩也全被绿泥石化,工业铀矿化总是和绿泥石在一起同时出现。绿泥石为隐晶质到鳞片状,交代黑云母、角闪石或白云母等矿物。绿泥石具有多个世代,而铀矿化与绿色的镁绿泥石的关系最为密切。近矿围岩中的绿泥石,经铷-锶法测定其同位素年龄值为1650~1600Ma,同区域上地洼阶段构造-岩浆活化期的时代相吻合,即同中元古代基性火山岩的时代合拍。镁绿泥石化是属成矿期的热液蚀变作用,常常是镁绿泥石化程度越强烈,铀矿化的品位越高,表明铀成矿作用是同镁交代作用有着成生的地球化学联系。

铀矿床的分布和定位,还与块状的成层白云岩或菱镁矿的厚度变小或缺失有关。在矿化范围内由于断裂构造极为发育,热液蚀变作用强烈,碳酸盐岩层的厚度明显变薄或缺失,矿体的破碎及角砾岩化程度相应增高,燧石交代碳酸盐岩普遍。这是因为断裂构造交汇处的硅化作用使碳酸盐岩的体积减小,然后引起塌陷,形成塌陷构造角砾岩,并成为铀成矿的空间及富集场地。从喀斯特成矿角度分析,矿床是与先成的喀斯特塌陷构造角砾岩有关。可称之为喀斯特型铀矿。从上所述表明,硅化以成矿前为主,属矿前期的热液蚀变作用。

5)矿石构造及物质成分

矿石构造以脉状、浸染状和角砾状3种为主,沥青铀矿呈脉状、浸染状或胶结角砾形式产出。浸染状沥青铀矿特别常见。角砾状矿石通常是角砾岩由绿泥石、石英、赤铁矿、沥青铀矿、石墨等矿物胶结。

铀矿石物质成分比较简单,主要为沥青铀矿,还有少量的晶质铀矿、铀石、钛铀矿和钍铀碳氢矿,以及黄铁矿、黄铜矿、方铅矿、钛铁矿、赤铁矿,少量自然金等。非金属矿物有绿泥石、石英、磷灰石、石墨、绢云母和碳酸盐矿物等。硫化物的存在与铀的富集无关,而方铅矿是放射成因的。由于铀矿体在靠近地表的35m深处产出,氧化带内的晶质铀矿和沥青矿多被氧化,故氧化带内有硅钙铀矿、脂铅铀矿及铀云母类等次生铀矿物的发育分布。矿石中富含稀土元素,特别是重稀土元素。此外,还含有汞、铜、铌、钼、钡和金,金有伴生利用价值,属金-铀矿石建造的矿床。

兰杰矿床的铀成矿作用具有多期次相间隔及铀矿石有多种成矿年龄值并存的重要特点。据G.R.Ewers和J.Ferguson研究,晶质铀矿的立方体,从内往外逐渐被绿泥石交代,铀在不同时期被活化。据矿体内矿石同位素年龄测定,最老的矿石年龄为1700Ma,富矿石年龄多为900Ma,还见有年龄为500Ma的矿石。结合地质分析,推测矿床的主成矿时代为900Ma,属晚元古代形成。矿石的多年龄值并存特点,表明矿床形成具多阶段、多期次叠加富集的多因复成特征,矿床的主成矿作用为热液成矿作用。矿区所在区域内蚀变的和未蚀变的卡希尔组的岩石,经K-Ar法测定白云母的年龄为1800Ma,说明矿床的形成是1800Ma的区域变质作用后发生,矿床并非是变质成因矿床,或者说变质作用不是矿床的主要成矿作用。

6)同位素地质特征

上已述及,经对矿石中细粒的晶质铀矿和方铅矿进行的铀-铅同位素测定,得出最老的贫铀矿石年龄为1700~1600Ma,富矿石年龄为900Ma,还有500Ma的矿石年龄。含矿围岩为古元古界卡希尔组,其层位时代的年龄均在2200~2000Ma,说明存在明显的矿岩时差。此外,对卡希尔组中白云母,不论其蚀变程度如何,其年龄均为1800Ma,表明铀成矿作用发生在地槽回返的区域变质作用之后。

对卡希尔组中含贫铀矿化的石墨片岩中,层状硫化物的黄铁矿作了硫同位素研究,获得δ34SCDT=+2‰士1‰。角砾岩带铀矿石内脉状和晶洞状硫化物,δ34SCDT=—6‰~+14‰,前者与地幔硫的δ34SCDT=+2‰士2‰值甚为接近,证明矿区含贫铀矿化的层状硫化物的硫是来自地幔深处,即硫化物的形成可能是来自火山成因的热液。后者与地下水带入部分与有机质有关的细菌硫酸盐还原作用有密切联系。

此外,对矿床含贫铀矿化的层状碳酸盐岩,主要是白云岩,作了氧同位素测定,获得δ18OSMOW为13‰~19‰。此值明显低于文献报导的古元古代海相碳酸盐的δ18OSMOW为15‰~25‰数值,这可能表明地下水使碳酸盐岩发生了重结晶作用。角砾岩带铀矿石中的碳酸盐δ18OSMOW值为+7‰~+20‰,δ13CPDB值为—20‰~0‰。上述矿石中碳酸盐的δ13C和δ18O之值变化范围很大,说明至少有一部分碳酸盐是来自有机质的CO2,以及受到地下水引起的再结晶作用影响所致。上述稳定同位素资料研究表明,铀成矿作用不是单一矿质来源,也不是单期成矿作用和某单一成因所能造成的现今矿床的复杂特征。

3.矿床形成条件

矿床及其所在区域内,卡希尔组含矿岩系的原始沉积铀富集达34g/t,非含矿岩系内岩石的铀含量达12~13g/t。矿区内上含矿岩系的厚度约150m,下含矿岩系厚度约250m,含矿岩系总厚度达400m。因此,含矿岩系本身的铀含量可供后生改造和再造成矿作用,提供丰富的成矿铀源。此外,矿区附近太古宙纳纳姆布杂岩含铀量也高,达9.6g/t,在二云母花岗片麻岩内含有晶质铀矿副矿物,除为矿区古元古代卡希尔期地槽沉积提供蚀源区主要铀源外,还可为地槽回返期及地洼阶段构造-岩浆活化成矿作用,提供后生成矿铀源。

地槽阶段和地洼阶段的岩浆岩及与其有关的热液作用,也可能提供部分铀源。据测试,古元古代晚期的花岗岩和喷发岩的铀含量高于世界值达6倍。由于矿区岩浆作用不发育,铀不是主要来自岩浆岩及其有关的热液。矿床成矿的主要铀源,主要来自卡希尔组含矿岩系本身及太古宙纳纳姆布杂岩。

矿床成矿物理-化学条件,是指900Ma以前的新元古代主要铀成矿期的条件。从铀矿体的近矿围岩蚀变主要是绿色的镁绿泥石,以及矿石出现较多的沥青铀矿,还有上述稳定同位素资料,均说明成矿温度为低温,约100~220℃范围。

成矿时的深度和压力都较小,由于成矿前先已形成断裂构造角砾岩及其演化的喀斯特塌陷构造角砾岩,故碎块角砾之间孔隙百分比高,有时甚至达50%。铀矿体垂向延深不大,距现今地表深35~250m以内。铀矿化赋存于缓倾的不透水层之上。但断裂构造与深部沟通,表明成矿溶液既有自上而下渗透运移的,又有深部来源的矿液混入。

矿体中U/Th比值均大于500,表明铀以6价形式搬运。花岗岩类岩石中U/Th值小于

1.1,花岗伟晶岩中约为12.5。

矿液的pH值,推测具有弱碱性特点,pH值大概在8左右。因为与铀矿化关系密切的镁绿泥石化强烈发育,铀矿物主要是沥青铀矿。杜乐天(1996)认为,镁铁交代成矿只是表面现象,绿泥石化、绿帘石化和碳酸盐化不是一类独立的蚀变,它们是碱交代作用三段式碱交代—中性交代—酸交代中不可分割的第二阶段,是从属于早期或深部碱交代的。成矿都在第三阶段酸尾或酸交代,正好发生在镁铁交代之后,铀矿化总易叠加在其上,因而有着密切的空间依存关系。铀成矿是碱交代前提下进行,故矿液具弱碱性特点。

该矿床的成矿空间十分有利且充分。矿区内古、中元古界之间的地层-构造不整合面明显发育,南北、北西和东西向断裂构造交叉部位的岩性破碎,所派生的裂隙呈密集分布,是成矿溶液的良好通道及储矿空间。南北向区域性大断裂,对矿床定位起着主导矿作用。该断裂呈正断层构造带形式产出,倾向东,倾角约30°~400。沿此断裂带见卡希尔组的碳酸盐岩和片岩,直接产于太古宙纳纳姆布杂岩之上(图5-24)。断裂带宽度达50m,以发育着强烈的构造角砾岩和糜棱岩带为明显标志,并发育着强烈的绿泥石化蚀变作用,局部见硅化作用。硅化作用主要在下含矿岩系及太古宙纳纳姆布杂岩中分布。

矿床的储矿空间特殊且充分。含矿岩系本身内,发育有近于顺层的断裂构造破碎带。含矿岩系呈南北走向,东倾,倾角为30°~40°,与矿区南北向主断裂产状近于吻合。含矿岩系内的顺层断裂破碎带,系矿区主断裂构造派生产物。此外,含矿岩系内还发育有大量密集的伟晶岩脉和粗玄岩脉,多以切层产出为特征。矿区内除南北向断裂构造外,还发育有近东西向和北西向的陡倾断裂,以及其所派生的陡倾裂隙构造密集带。

图5-24兰杰铀矿床成矿演化阶段

Ⅰ.地槽阶段沉积-成岩期原始铀富集;Ⅱ.地槽阶段褶皱变质期贫铀矿化富集;Ⅲ.地洼阶段热液期铀工业矿化富集;Ⅳ.地洼阶段热液期铀-金矿化叠加富集;1.科姆波尔吉砂砾岩;2.卡希尔组含铀岩系;3.纳纳姆布杂岩;4.断裂构造;5.复杂成因角砾岩;6.不整合面;7.地壳沉降或隆起;8.星散状贫铀矿化;9.工业铀矿化;10.U运移方向;11.U、Au、Hg运移方向

整个铀矿床是处在断陷块段构造之中,受缓倾的南北向断裂及陡倾的北西和东西向断裂的联合制约。整个矿化地段,不仅岩性破碎,岩浆岩脉发育,而且广泛发育着绿泥石化、硅化等热液蚀变作用。综上所述表明,矿区经受过多阶段、多期次的构造破碎作用,先后共同营造了这种良好的成矿构造空间。

铀成矿的热源和动力源条件,是指主成矿期而言。从所论述得知,铀矿床主要形成于900Ma以前,其次是500Ma以前的再次工业成矿作用。这种时代正是新元古代地洼阶段的构造-岩浆活化作用的激烈期末至余动期相吻合。故认为矿床成矿的热源和动力源,与地洼阶段的构造-岩浆活化作用密切相关。但至今尚未发现铀矿化分布与岩浆岩有直接联系,因此,被看成是主要起提供热源和动力源作用。正如前述,成矿介质是热水溶液,而水溶液主要来自地表水,经构造-岩浆活动加热,或许有少部分来自地壳深处的热液渗入。科姆布尔吉红色石英砂岩内,有形成于1370~1200Ma前的粗玄岩和熔岩,这就是铀成矿的热源和动力源的有力佐证。

4.铀成矿作用的演化

1)矿区大地构造的演化

矿区地壳经历了特别长而复杂的大地构造演化历史,最主要的有前地槽、地槽和地洼阶段,在地槽阶段后还有过短暂的地台阶段。

矿区内在太古宙形成了一套结晶片岩、片麻岩、片麻状花岗岩、变质闪长岩和混合岩等,它们组成了纳纳姆布杂岩。片岩中夹有条带状铁质石英岩。本区片麻状花岗岩的年龄,经Rb-Sr等时线法测定为2468Ma,而用U-Pb法测定锆石的年龄为2550Ma。因而推定纳纳姆布杂岩,属新太古代形成。它组成矿区古元古代派因—克里克地槽的结晶基底,从地壳构造演化阶段分析,应列为前地槽阶段。对前地槽阶段的大地构造特征,有待进一步研究。

矿区在古元古代(2400~1700Ma)为地槽阶段。在地槽沉降期间,形成了卡希尔组的一套含铀岩系(2200~2000Ma),岩性为含黄铁矿、碳质和有机质的碳酸盐岩、碳质片岩,属于潮间或潮上、潮下相及浅海相沉积。其上为石英岩和片岩,系陆源碎屑沉积仍归为卡希尔组,但不属含铀岩系。后来含铀岩系及其余部分的卡希尔组,经受地槽回返期的强烈区域变质作用和褶皱、断裂构造作用(1900~1700Ma),形成了褶断构造型相的地槽构造层。

地槽回返后,矿区地壳再度沉降,形成了中元古代的科姆波尔吉红色砂砾岩,局部夹火山岩,其形成时间约为1650~1370Ma。这套红色砂砾岩出露于矿区南部及矿区外围的东侧,而在矿床的1矿段和3矿段内,已经剥蚀殆尽,故矿段剖面图中已见不到中元古代的红色砂砾岩及古—中元古界之间的不整合面。至于科姆波尔吉组的大地构造属性问题,放在澳北区贾比卢卡矿床中详细讨论,我们在此先列入地洼阶段沉积。关于地槽回返后,矿区是否有过地台阶段沉积,或者是由于地台阶段时间短,沉积厚度不大,后经隆起剥蚀作用已无残存,均有待今后进一步研究。

中元古代科姆波尔吉河相砂砾岩形成之后,矿区地壳又再次断块隆起,使先成的南北向、东西向和北西及北东向断裂产生活化作用,继而使矿区大部分地域的中元古代红色砂砾岩风化剥蚀殆尽。迄今仍保持缓慢的地壳上升的地洼构造特点。

2)铀成矿作用的演化

从上所述得知,矿床的铀成矿作用经历了古元古代地槽沉积期的原始铀富集作用、地槽阶段变质期贫铀矿化富集作用、新元古代地洼阶段热液期铀的工业矿化富集作用,以及早古生代地洼阶段再次热液期铀-金矿化叠加富集作用(图5-24、表5-7)。

地槽阶段沉积-成岩期(2200~1900Ma)铀的原始富集作用,铀的富集程度达30~40g/t。由于地槽的结晶基底是太古宙纳纳姆布杂岩,其铀含量为9g/t,造成地槽阶段沉积期蚀源区有丰富的铀源。在古元古代矿区地壳处于地槽沉降频繁活动期的浅海相和潮湖相沉积环境下,形成了一套富含碳质和黄铁矿的薄层泥质岩和白云岩互层的含铀岩石建造,即卡希尔组下段的含铀岩系。该含铀岩系厚度超出400m,从而为尔后的各种改造和再造成矿作用,提供了铀源层基础及叠加成矿作用有利的成矿岩性条件。

地槽阶段褶皱变质期(1900~1700Ma)贫铀矿化富集作用,是伴随矿区地壳在褶皱造山和区域变质作用中形成。矿区内卡希尔组的含铀层位中星散状晶质铀矿和方铅矿,经铀-铅同位素年龄测定为1700Ma,以及卡希尔组中白云母的年龄为1800Ma,可作为良好的佐证。含矿岩系经褶皱造山及其伴随的南北向区域性断裂及东西、北东和北西向断裂发育,部分出露地表,经地表水和地下水溶蚀作用,在原白云岩夹层分布地段形成喀斯特洞穴。在洞穴中除含矿岩系的角砾碎屑外,还有云母、绿泥石、粘土和石墨等不可溶的物质。这种溶蚀洞穴经天长地久时间后,形成自然塌陷,构成塌陷角砾岩,或是由于早期硅化作用使碳酸盐岩体积变小,产出塌陷构造。特别在断裂构造穿切白云岩的地段,尤为明显。岩石碎块及角砾之间的孔隙发育,有时达50%,为后来改造和再造的铀成矿作用,提供了先期有利成矿空间及有利的成矿围岩环境。

表5-7兰杰铀矿床成矿作用演化表

地洼阶段热液期(900~800Ma)铀的工业富集作用,发生在中元古代科姆波尔吉红色砂砾岩组成的地洼构造层及古元古界与中元古界之间的不整合面形成之后。由于矿区地壳再次发生构造-岩浆活化,粗玄岩脉切穿不整合面和侵入科姆波尔吉砂砾岩。矿区地壳再次断块隆起,使先成断裂构造活化,从而形成了较大的溶蚀塌陷构造和不同方向的断裂构造交汇及重叠的角砾岩区段。另外,含矿岩系中的碳酸盐岩经受硅化作用,体积变小,也促使形成塌陷构造角砾岩。构造-岩浆活化作用加热了的地下水,加上深部热液,形成的混合成因的含铀热液,在构造驱动力作用下,进入多期构造角砾岩化区段,发生沉淀交代和充填成矿作用。矿体分布处镁绿泥石化极为发育,同位素年龄为900Ma的沥青铀矿胶结复杂成因的角砾就是佐证。

地洼阶段热液期铀-金矿化(570~500Ma)叠加富集作用,是矿床基本定型之后,矿区地壳再次发生构造-岩浆活化作用,但其活化程度比前期的工业铀矿化作用弱。矿床外围有同位素年龄为522Ma的粗玄岩脉分布,矿区内有年龄为500Ma的沥青铀矿出现。此期形成的矿石除铀外,还伴有金和汞,后者未达独立的工业利用品级。上述这些均可作为矿区经历了第二次活化作用叠加成矿的证据,只是成矿强度和规模比900Ma主成矿期的要弱而小。

阅读全文

与澳大利亚超特粉是哪个矿山生产相关的资料

热点内容
金华义乌国际商贸城雨伞在哪个区 浏览:733
俄罗斯如何打通飞地立陶宛 浏览:1109
韩国如何应对流感 浏览:894
在德国爱他美白金版卖多少钱 浏览:934
澳大利亚养羊业为什么发达 浏览:1358
如何进入法国高等学府 浏览:1448
巴西龟喂火腿吃什么 浏览:1374
巴西土地面积多少万平方千米 浏览:1234
巴西龟中耳炎初期要用什么药 浏览:1204
国际为什么锌片如此短缺 浏览:1605
巴西是用什么规格的电源 浏览:1426
在中国卖的法国名牌有什么 浏览:1334
在菲律宾投资可用什么样的居留条件 浏览:1235
德国被分裂为哪些国家 浏览:851
澳大利亚跟团签证要什么材料 浏览:1177
德国大鹅节多少钱 浏览:848
去菲律宾过关时会盘问什么 浏览:1171
澳大利亚女王为什么是元首 浏览:997
有什么免费的韩国小说软件 浏览:733
申请德国学校如何找中介 浏览:637