导航:首页 > 巴西资讯 > 巴西为什么不发展太阳能

巴西为什么不发展太阳能

发布时间:2023-05-28 23:15:23

❶ 为什么巴西不能崛起

巴西这个国家地大物博,历史也很悠久,要人口有人口,要领土有领土,有资源有资源,可谓算得上是要什么有什么,由于日照充足而且属热带气候,不知道什么是冷,而且瓜果蔬菜丰富吃穿不愁,但是为什么巴西一直都不能崛起,成为世界强国呢,这其中也是有一定原因的,下面我为大家揭露几点吧。

第三点,这也是比较重要的一点,就是他们的邻居美国,由于巴西地区偏远,在南美洲,无论距离东亚还是西欧都太遥远,因此也很少有人愿意去那里投资搞贸易。离他们最近的就是美国,众所周知美国是一个会压制强国的国家,所以巴西也是一直在他的阴影下生活的,一直在明里暗里的压制着巴西,这也是他们无法强大无法发展起来的最大原因。

❷ 关于太阳能的问题50分

一般指太阳光的辐射能量。在太阳内部进行的由“氢”聚变成“氦”的原子核反应,不停地释放出巨大的能量,并不断向宇宙空间辐射能量,这种能量就是太阳能。太阳内部的这种核聚变反应可以维持几十亿至上百亿年的时间。太阳向宇宙空间发射的辐射功率为3.8×1023kW的辐射值,其中20亿分之一到达地球大气层。到达地球大气层的太阳能,30%被大气层反射,23%被大气层吸收,其余的到达地球表面,其功率为8×1013kW,也就是说太阳每秒钟照射到地球上的能量就相当于燃烧500万吨煤释放的热量。广义上的太阳能是地球上许多能量的来源,如风能,化学能,水的势能等等。狭义的太阳能则限于太阳辐射能的光热、光电和肆陵槐光化学的直接转换。
人类对太阳能的利用有着悠久的历史。我国早在两千多年前的战国时期就知道利用钢汪伍制四面镜聚焦太阳光来点火;利用太阳能来干燥农副产品。发展到现代,太阳能的利用已日益广泛,它包括太阳能的光热利用,太阳能的光电利用和太阳能的光化学利用等。太阳能的利用有被动式利用(光热转换)和光电转换两种方式。太阳能发电一种新兴的可再生能源利用方式。
使用太阳电池,通过光电转换把太阳光中包含的能量转化为电能,使用太阳能热水器,利用太阳光的热量加热水,并利用热水发电,利用太阳能进行海水淡化。现在,太阳能的利用还不很普及,利用太阳能发电还存在成本高、转换裂友效率低的问题,但是太阳电池在为人造卫星提供能源方面得到了应用。
【英文简述】
Solar power (also known as solar energy) is Solar Radiation emitted from our sun. Solar energy has been used in many traditional technologies for centuries, and has come into widespread use where other power supplies are absent, such as in remote locations and in space.
Solar energy is currently used in a number of applications:

Heat (hot water, building heat, cooking)
Electricity generation (photovoltaics, heat engines)
Transportation (solar car)
Desalination of seawater.

【原理】

太阳能是太阳内部连续不断的核聚变反应过程产生的能量。地球轨道上的平均太阳辐射强度为1367kw/m2。地球赤道的周长为40000km,从而可计算出,地球获得的能量可达173,000TW。在海平面上的标准峰值强度为1kw/m2,地球表面某一点24h的年平均辐射强度为0.20kw/m2,相当于有102,000TW 的能量,人类依赖这些能量维持生存,其中包括所有其他形式的可再生能源(地热能资源除外)虽然太阳能资源总量相当于现在人类所利用的能源的一万多倍,但太阳能的能量密度低,而且它因地而异,因时而变,这是开发利用太阳能面临的主要问题。太阳能的这些特点会使它在整个综合能源体系中的作用受到一定的限制。

尽管太阳辐射到地球大气层的能量仅为其总辐射能量(约为3.75×1026W)的22亿分之一,但已高达173,000TW,也就是说太阳每秒钟照射到地球上的能量就相当于500万吨煤。地球上的风能、水能、海洋温差能、波浪能和生物质能以及部分潮汐能都是来源于太阳;即使是地球上的化石燃料(如煤、石油、天然气等)从根本上说也是远古以来贮存下来的太阳能,所以广义的太阳能所包括的范围非常大,狭义的太阳能则限于太阳辐射能的光热、光电和光化学的直接转换。

太阳能既是一次能源,又是可再生能源。它资源丰富,既可免费使用,又无需运输,对环境无任何污染。为人类创造了一种新的生活形态,使社会及人类进入一个节约能源减少污染的时代。

【分类】

太阳能光伏
光伏板组件是一种暴露在阳光下便会产生直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成。由于没有活动的部分,故可以长时间操作而不会导致任何损耗。简单的光伏电池可为手表及计算机提供能源,较复杂的光伏系统可为房屋照明,并为电网供电。 光伏板组件可以制成不同形状,而组件又可连接,以产生更多电力。近年,天台及建筑物表面均会使用光伏板组件,甚至被用作窗户、天窗或遮蔽装置的一部分,这些光伏设施通常被称为附设于建筑物的光伏系统。

太阳热能
现代的太阳热能科技将阳光聚合,并运用其能量产生热水、蒸气和电力。除了运用适当的科技来收集太阳能外,建筑物亦可利用太阳的光和热能,方法是在设计时加入合适的装备,例如巨型的向南窗户或使用能吸收及慢慢释放太阳热力的建筑材料。

【利用太阳能的历史】

据记载,人类利用太阳能已有3000多年的历史。将太阳能作为一种能源和动力加以利用,只有300多年的历史。真正将太阳能作为“近期急需的补充能源”,“未来能源结构的基础”,则是近来的事。20世纪70年代以来,太阳能科技突飞猛进,太阳能利用日新月异。近代太阳能利用历史可以从1615年法国工程师所罗门·德·考克斯在世界上发明第一台太阳能驱动的发动机算起。该发明是一台利用太阳能加热空气使其膨胀做功而抽水的机器。在1615年~1900年之间,世界上又研制成多台太阳能动力装置和一些其它太阳能装置。这些动力装置几乎全部采用聚光方式采集阳光,发动机功率 不大,工质主要是水蒸汽,价格昂贵,实用价值不大,大部分为太阳能爱好者个人研究制造。20世纪的100年间,太阳能科技发展历史大体可分为七个阶段。
第一阶段(1900-1920)
在这一阶段,世界上太阳能研究的重点仍是太阳能动力装置,但采用的聚光方式多样化,且开始采用平板集热器和低沸点工质,装置逐渐扩大,最大输出功率达73.64kW,实用目的比较明确,造价仍然很高。建造的典型装置有:1901年,在美国加州建成一台太阳能抽水装置,采用截头圆锥聚光器,功率:7.36kW;1902 -1908年,在美国建造了五套双循环太阳能发动机,采用平板集热器和低沸点工质;1913年,在埃及开罗以南建成一台由5个抛物槽镜组成的太阳能水泵,每个长62.5m,宽4m,总采光面积达1250m2。

第二阶段(1920-1945)
在这20多年中,太阳能研究工作处于低潮,参加研究工作的人数和研究项目大为减少,其原因与矿物燃料的大量开发利用和发生第二次世界大战(1935-1945)有关,而太阳能又不能解决当时对能源的急需,因此使太阳能研究工作逐渐受到冷落。

第三阶段(1945-1965)
在第二次世界大战结束后的20年中,一些有远见的人士已经注意到石油和天然气资源正在迅速减少, 呼吁人们重视这一问题,从而逐渐推动了太阳能研究工作的恢复和开展,并且成立太阳能学术组织,举办学术交流和展览会,再次兴起太阳能研究热潮。 在这一阶段,太阳能研究工作取得一些重大进展,比较突出的有:1945年,美国贝尔实验室研制成实用型硅太阳电池,为光伏发电大规模应用奠定了基础;1955年,以色列泰伯等在第一次国际太阳热科学会议上提出选择性涂层的基础理论,并研制成实用的黑镍等选择性涂层,为高效集热器的发展创造了条件。此外,在这一阶段里还有其它一些重要成果,比较突出的有: 1952年,法国国家研究中心在比利牛斯山东部建成一座功率为50kW的太阳炉。1960年,在美国佛罗里达建成世界上第一套用平板集热器供热的氨-水吸收式空调系统,制冷能力为5冷吨。1961年,一台带有石英窗的斯特林发动机问世。在这一阶段里,加强了太阳能基础理论和基础材料的研究,取得了如太阳选择性涂层和硅太阳电池等技术上的重大突破。平板集热器有了很大的发展,技术上逐渐成熟。太阳能吸收式空调的研究取得进展,建成一批实验性太阳房。对难度较大的斯特林发动机和塔式太阳能热发电技术进行了初步研究。

第四阶段(1965-1973)
这一阶段,太阳能的研究工作停滞不前,主要原因是太阳能利用技术处于成长阶段,尚不成熟,并且投资大,效果不理想,难以与常规能源竞争,因而得不到公众、企业和政府的重视和支持。

第五阶段(1973-1980)
自从石油在世界能源结构中担当主角之后,石油就成了左右经济和决定一个国家生死存亡、发展和衰退的关键因素,1973年10月爆发中东战争,石油输出国组织采取石油减产、提价等办法,支持中东人民的斗争,维护本国的利益。其结果是使那些依靠从中东地区大量进口廉价石油的国家,在经济上遭到沉重打击。 于是,西方一些人惊呼:世界发生了“能源危机”(有的称“石油危机”)。这次“危机”在客观上使人们认识到:现有的能源结构必须彻底改变,应加速向未来能源结构过渡。从而使许多国家,尤其是工业发达国家,重新加强了对太阳能及其它可再生能源技术发展的支持,在世界上再次兴起了开发利用太阳能热潮。1973年,美国制定了政府级阳光发电计划,太阳能研究经费大幅度增长,并且成立太阳能开发银行,促进太阳能产品的商业化。日本在1974年公布了政府制定的“阳光计划”,其中太阳能的研究开发项目有:太阳房 、工业太阳能系统、太阳热发电、太阳电池生产系统、分散型和大型光伏发电系统等。为实施这一计划,日本政府投入了大量人力、物力和财力。70年代初世界上出现的开发利用太阳能热潮,对我国也产生了巨大影响。一些有远见的科技人员,纷纷投身太阳能事业,积极向政府有关部门提建议,出书办刊,介绍国际上太阳能利用动态;在农村推广应用太阳灶 ,在城市研制开发太阳热水器,空间用的太阳电池开始在地面应用……。 1975年,在河南安阳召开“全国第一次太阳能利用工作经验交流大会”,进一步推动了我国太阳能事业的发展。这次会议之后,太阳能研究和推广工作纳入了我国政府计划,获得了专项经费和物资支持。一些大学和科研院所,纷纷设立太阳能课题组和研究室,有的地方开始筹建太阳能研究所。当时,我国也兴起了开发利用太阳能的热潮。 这一时期,太阳能开发利用工作处于前所未有的大发展时期,具有以下特点:
各国加强了太阳能研究工作的计划性,不少国家制定了近期和远期阳光计划。开发利用太阳能成为政府行为,支持力度大大加强。国际间的合作十分活跃,一些第三世界国家开始积极参与太阳能开发利用工作。
研究领域不断扩大,研究工作日益深入,取得一批较大成果,如CPC、真空集热管、非晶硅太阳电池、 光解水制氢、太阳能热发电等。
各国制定的太阳能发展计划,普遍存在要求过高、过急问题,对实施过程中的困难估计不足,希望在较短的时间内取代矿物能源,实现大规模利用太阳能。例如,美国曾计划在1985年建造一座小型太阳能示范卫星电站,1995年建成一座500万kW空间太阳能电站。事实上,这一计划后来进行了调整,至今空间太阳 能电站还未升空。
太阳热水器、太阳电他等产品开始实现商业化,太阳能产业初步建立,但规模较小,经济效益尚不理想

第六阶段(1980-1992)
70年代兴起的开发利用太阳能热潮,进入80年代后不久开始落潮,逐渐进入低谷。世界上许多国家相继大幅度削减太阳能研究经费,其中美国最为突出。导致这种现象的主要原因是:世界石油价格大幅度回落,而太阳能产品价格居高不下,缺乏竞争力;太阳能技术没有重大突破,提高效率和降低成本的目标没有实现,以致动摇了一些人开发利用太阳能的信心;核电发展较快,对太阳能的发展起到了一定的抑制作用。 受80年代国际上太阳能低落的影响,我国太阳能研究工作也受到一定程度的削弱,有人甚至提出:太阳能利用投资大、效果差、贮能难、占地广,认为太阳能是未来能源,主张外国研究成功后我国引进技术。虽然,持这种观点的人是少数,但十分有害,对我国太阳能事业的发展造成不良影响这一阶段,虽然太阳能开发研究经费大幅度削减,但研究工作并未中断,有的项目还进展较大,而且促使 人们认真地去审视以往的计划和制定的目标,调整研究工作重点,争取以较少的投入取得较大的成果。

第七阶段(1992- 至今)
由于大量燃烧矿物能源,造成了全球性的环境污染和生态破坏,对人类的生存和发展构成威胁。在这样背景下,1992年联合国在巴西召开“世界环境与发展大会”,会议通过了《里约热内卢环境与发展宣言》, 《21世纪议程》和《联合国气候变化框架公约》等一系列重要文件,把环境与发展纳入统一的框架,确立了 可持续发展的模式。这次会议之后,世界各国加强了清洁能源技术的开发,将利用太阳能与环境保护结合在 一起,使太阳能利用工作走出低谷,逐渐得到加强。世界环发大会之后,我国政府对环境与发展十分重视,提出10条对策和措施,明确要“因地制宜地开发和推广太阳能、风能、地热能、潮汐能、生物质能等清洁能源”,制定了《中国21世纪议程》,进一步明确 了太阳能重点发展项目。1995年国家计委、国家科委和国家经贸委制定了《新能源和可再生能源发展纲要》 (1996- 2010),明确提出我国在1996-2010年新能源和可再生能源的发展目标、任务以及相应的对策和措施 。这些文件的制定和实施,对进一步推动我国太阳能事业发挥了重要作用。 1996年,联合国在津巴布韦召开“世界太阳能高峰会议”,会后发表了《哈拉雷太阳能与持续发展宣言 》,会上讨论了《世界太阳能10年行动计划》(1996- 2005),《国际太阳能公约》,《世界太阳能战略规划》等重要文件。这次会议进一步表明了联合国和世界各国对开发太阳能的坚定决心,要求全球共同行动 ,广泛利用太阳能。1992年以后,世界太阳能利用又进入一个发展期,其特点是:太阳能利用与世界可持续发展和环境保护紧密结合,全球共同行动,为实现世界太阳能发展战略而努力;太阳能发展目标明确,重点突出,措施得力,有利于克服以往忽冷忽热、过热过急的弊端,保证太阳能事业的长期发展;在加大太阳能研究开发力度的同时,注意科技成果转化为生产力,发展太阳能产业,加速商业化进程,扩大太阳能利用领域和规模,经济效益逐渐提高;国际太阳能领域的合作空前活跃,规模扩大,效果明显。通过以上回顾可知,在本世纪100年间太阳能发展道路并不平坦,一般每次高潮期后都会出现低潮期,处于低潮的时间大约有45年。太阳能利用的发展历程与煤、石油、核能完全不同,人们对其认识差别大,反复多,发展时间长。这一方面说明太阳能开发难度大,短时间内很难实现大规模利用;另一方面也说明太阳能利用还受矿物能源供应,政治和战争等因素的影响,发展道路比较曲折。尽管如此,从总体来看,20世纪取得的太阳能科技进步仍比以往任何一个世纪都大。

【利弊】

优点:�
(1)普遍:太阳光普照大地,无论陆地或海洋,无论高山或岛屿,都处处皆有,可直接开发和利用,且勿须开采和运输。�
(2)无害:开发利用太阳能不会污染环境,它是最清洁的能源之一,在环境污染越来越严重的今天,这一点是极其宝贵的。�
(3)巨大:每年到达地球表面上的太阳辐射能约相当于130万亿t标煤,其总量属现今世界上可以开发的最大能源。�
(4)长久:根据目前太阳产生的核能速率估算,氢的贮量足够维持上百亿年,而地球的寿命也约为几十亿年,从这个意义上讲,可以说太阳的能量是用之不竭的。�

缺点:�
(1)分散性:到达地球表面的太阳辐射的总量尽管很大,但是能流密度很低。平均说来,北回归线附近,夏季在天气较为晴朗的情况下,正午时太阳辐射的辐照度最大,在垂直于太阳光方向1m�2面积上接收到的太阳能平均有1000W左右;若按全年日夜平均,则只有200W左右。而在冬季大致只有一半,阴天一般只有1/5左右,这样的能流密度是很低的。因此,在利用太阳能时,想要得到一定的转换功率,往往需要面积相当大的一套收集和转换设备,造价较高。�
(2)不稳定性:由于受到昼夜、季节、地理纬度和海拔高度等自然条件的限制以及晴、阴、云、雨等随机因素的影响,所以,到达某一地面的太阳辐照度既是间断的又是极不稳定的,这给太阳能的大规模应用增加了难度。为了使太阳能成为连续、稳定的能源,从而最终成为能够与常规能源相竞争的替代能源,就必须很好地解决蓄能问题,即把晴朗白天的太阳辐射能尽量贮存起来以供夜间或阴雨天使用,但目前蓄能也是太阳能利用中较为薄弱的环节之一。�
(3)效率低和成本高:目前太阳能利用的发展水平,有些方面在理论上是可行的,技术上也是成熟的。但有的太阳能利用装置,因为效率偏低,成本较高,总的来说,经济性还不能与常规能源相竞争。在今后相当一段时期内,太阳能利用的进一步发展,主要受到经济性的制约。�

太阳能利用中的经济问题:�
第一,世界上越来越多的国家认识到一个能够持续发展的社会应该是一个既能满足社会需要,而又不危及后代人前途的社会。因此,尽可能多地用洁净能源代替高含碳量的矿物能源,是能源建设应该遵循的原则。随着能源形式的变化,常规能源的贮量日益下降,其价格必然上涨,而控制环境污染也必须增大投资。
第二,我国是世界上最大的煤炭生产国和消费国,煤炭约占商品能源消费结构的76%,已成为我国大气污染的主要来源。大力开发新能源和可再生能源的利用技术将成为减少环境污染的重要措施。能源问题是世界性的,向新能源过渡的时期迟早要到来。从长远看,太阳能利用技术和装置的大量应用,也必然可以制约矿物能源价格的上涨。

【我国太阳能资源】

在我国,西藏西部太阳能资源最丰富,最高达2333 KWh/ m2 (日辐射量6.4KWh/ m2 ),居世界第二位,仅次于撒哈拉大沙漠。
根据各地接受太阳总辐射量的多少,可将全国划分为五类地区。
一类地区为我国太阳能资源最丰富的地区,年太阳辐射总量6680-8400 MJ/m2,相当于日辐射量5.1-6.4KWh/m2。这些地区包括宁夏北部、甘肃北部、新疆东部、青海西部和西藏西部等地。尤以西藏西部最为丰富,最高达2333 KWh/ m2 (日辐射量6.4KWh/ m2 ),居世界第二位,仅次于撒哈拉大沙漠。
二类地区为我国太阳能资源较丰富地区,年太阳辐射总量为5850-6680 MJ/m2,相当于日辐射量4.5-5.1KWh/m2。这些地区包括河北西北部、山西北部、内蒙古南部、宁夏南部、甘肃中部、青海东部、西藏东南部和新疆南部等地。
三类地区为我国太阳能资源中等类型地区,年太阳辐射总量为5000-5850 MJ/m2,相当于日辐射量3.8-4.5KWh/m2。主要包括山东、河南、河北东南部、山西南部、新疆北部、吉林、辽宁、云南、陕西北部、甘肃东南部、广东南部、福建南部、苏北、皖北、台湾西南部等地。
四类地区是我国太阳能资源较差地区,年太阳辐射总量4200-5000 MJ/m2,相当于日辐射量3.2-3.8KWh/m2。这些地区包括湖南、湖北、广西、江西、浙江、福建北部、广东北部、陕南、苏北、皖南以及黑龙江、台湾东北部等地。
五类地区主要包括四川、贵州两省,是我国太阳能资源最少的地区,年太阳辐射总量3350-4200 MJ/m2,相当于日辐射量只有2.5-3.2KWh/m2。
太阳能辐射数据可以从县级气象台站取得,也可以从国家气象局取得。从气象局取得的数据是水平面的辐射数据,包括:水平面总辐射,水平面直接辐射和水平面散射辐射。
从全国来看,我国是太阳能资源相当丰富的国家,绝大多数地区年平均日辐射量在4 kWh/m2.天 以上,西藏最高达7 kWh/m2.天。

【太阳能发展之路】

太阳能的利用有多种方式:
1-太阳热能的利用,比如太阳能热水器,目前就用的比较多也比较普及;
2-太阳能发电,是目前太阳能利用的重点研究领域,主要的普及障碍是:
①用于完成光电转化的硅光电池成本太高、转化效率低、使用寿命短;
②用于储存电能的蓄电池成本高、使用寿命有限、造成环境污染。
国外采用电能联网的办法解决电能的储存问题,不用电池储电,直接供电,效果很好,但需要形成规模,并有政府的介入协调管理。硅光电池的技术正在快速发展和进步之中。目前太阳能发电还主要用在一些很难获得其他电力资源的地区或场所。

【太阳能热利用】

概述:众所周知,人类目前大量利用的木头、石油、煤炭、天然气等能源都是通过植物光合作用等方式间接利用太阳能,可以毫不夸张地说,太阳是目前人类所能利用的唯一的能源来源,而到目前为止,通过光合作用等间接利用太阳能又是最重要的方式,而太阳能的直接利用方式则是二十世纪前后才真正进入人们的生活。从太阳能的间接利用到直接利用,是人类利用太阳能的质的飞跃,如果人类能在太阳能的直接利用技术上取得重大突破,那么就像人类第一次学会钻木取火使人类与动物区分开来一样,太阳能将再次改写人类的历史,人类文明的发展将进入一个崭新的阶段,对此,我们抱着极大的期待和信心!
就目前来说,人类直接利用太阳能还处于初级阶段,主要有太阳能集热、太阳能热水系统、太阳能暖房、太阳能发电等方式。

(一)太阳能集热器

太阳能热水器装置通常包括太阳能集热器、储水箱、管道及抽水泵其他部件。另外在冬天需要热交换器和膨胀槽以及发电装置以备电厂不能供电之需 。太阳能集热器(solar collector)在太阳能热系统中,接受太阳辐射并向传热工质传递热量的装置。按传热工质可分为液体集热器和空气集热器.按采光方式可分为聚光型和聚光型集热器两种。另外还有一种真空集热器:一个好的太阳能集热器应该能用20-30年。自从大约1980年以来所制作的集热器更应维持40-50年且很少进行维修。

(二)太阳能热水系统

早期最广泛的太阳能应用即用于将水加热,现今全世界已有数百万太阳能热水装置。太阳能热水系统主要元件包括收集器、储存装置及循环管路三部分。此外,可能还有辅助的能源装置(如电热器等)以供应无日照时使用,另外尚可能有强制循环用的水,以控制水位或控制电动部份或温度的装置以及接到负载的管路等。依循环方式太阳能热水系统可分两种:(a)自然循环式: 此种型式的储存箱置于收集器上方。水在收集器中接受太阳幅射的加热,温度上升,造成收集器及储水箱中水温不同而产生密度差,因此引起浮力,此一热虹吸现像,促使水在除水箱及收集器中自然流动。由与密度差的关系,水流量于收集器的太阳能吸收量成正比。此种型式因不需循环水,维护甚为简单,故已被广泛采用。 (b)强制循环式:热水系统用水使水在收集器与储水箱之间循环。当收集器顶端水温高于储水箱底部水温若干度时,控制装置将启动水使水流动。水入口处设有止回阀以防止夜间水由收集器逆流,引起热损失。由此种型式的热水系统的流量可得知(因来自水的流量可知),容易预测性能,亦可推算于若干时间内的加热水量。如在同样设计条件下,其较自然循环方式具有可以获得较高水温的长处,但因其必须利用水,故有水电力、维护(如漏水等)以及控制装置时动时停,容易损坏水等问题存在。因此,除大型热水系统或需要较高水温的情形,才选择强制循环式,一般大多用自然循环式热水器。

(三)暖房

利用太阳能作房间冬天暖房之用,在许多寒冷地区已使用多年。因寒带地区冬季气温甚低,室内必须有暖气设备,若欲节省大量化石能源的消耗,设法应用太阳幅射热。大多数太阳能暖房使用热水系统,亦有使用热空气系统。太阳能暖房系统是由太阳能收集器、热储存装置、辅助能源系统,及室内暖房风扇系统所组成,其过程乃太阳辐射热传导,经收集器内的工作流体将热能储存,在供热至房间。至辅助热源则可装置在储热装置内、直接装设在房间内或装设于储存装置及房间之间等不同设计。当然亦可不用储热双置而直接将热能用到暖房的直接式暖房设计,或者将太阳能直接用于热电或光电方式发电,在加热房间,或透过冷暖房的热装置方式供作暖房使用。最常用的暖房系统为太阳能热水装置,其将热水通至储热装置之中(固体、液体或相变化的储热系统),然后利用风扇将室内或室外空气驱动至此储热装置中吸热,在把此热空气传送至室内;或利用另一种液体流至储热装置中吸热,当热流体流至室内,在利用风扇吹送被加热空气至室内,而达到暖房效果。

(四)太阳能发电

即直接将太阳能转变成电能,并将电能存储在电容器中,以备需要时使用。

空间太阳能电源

第一个空间太阳电池载于1958年发射的Vangtuard I,体装式结构,单晶Si衬底,效率约10%(28℃)。到了1970年代,人们改善了电池结构,采用BSF、光刻技术及更好减反射膜等技术,使电池的效率增加到14%。在70年代和80年代,地面太阳电池大约每5.5年全球产量翻番;而空间太阳电池在空间环境下的性能,如抗辐射性能等得到了较大改善。由于80年代太阳电池的理论得到迅速发展,极大地促进了地面和空间太阳电池性能的改善。到了90年代,薄膜电池和Ⅲ-Ⅴ电池的研究发展很快,而且聚光阵结构也变得更经济,空间太阳电池市场竞争十分激烈。在继续研究更高性能的太阳电池,主要有两种途径:研究聚光电池和多带隙电池。

4.1 太阳能采集
太阳辐射的能流密度低,在利用太阳能时为了获得

❸ 太阳能逆变器在巴西会有反倾销吗

反倾销会发生运差在
1:保护该国企业
2:使用过度,导致该国资源交换流出过多。
太阳能,基本上巴西这项工业基本没底,不会因为要保护当地企业而“反倾销”,光伏电站,基本受政策补贴影响,完全不需要担心使用过度。
相信,巴西连太阳能板都没必要阻挡进口,更不用说价值不高的逆变器。
要外销巴西的逆变器,只要担心有没有使用的群旁桥皮体,完全无须担心反倾销消搭。

❹ 巴西的能源矿产不多,政府采取了一些办法解决能源矿产短缺的问题。对此我们能得到什么启示还有哪些建议

巴西是一个资源大国,但是巴西的能源资源相对几个大国而言,以煤、石油为主的能源矿产资源不多,但是巴西的的其他资源比较有优势,特别是农业,水利等资源是世界上少有的几个国家,巴西为了解决本国的经济发展,缓减本国的能源需求,将大量的粮食作物用来制作工业酒精,发展本国工业。
巴西本身是一个地多人少的国家,其农产品主要用来销售,如果巴西本国为了自己的利益,坚持将大量的农业产品用于工业生产,那么很多粮食资源欠缺的国家将会更加贫困和贫穷,社会不安定问题更加日益突出,社会和谐发展将会受到阻碍,经济发展,贫富差距更加严峻,地区安全,社会冲突,恐怖活动等等一系列问题都会日益严重。
石油,煤炭是目前世界上使用最广的常规能源,但是它却是不可再生能源,是地球上的生物经过几千年的地质演变而成的,用一点少一点,并且,这些常规能源在燃烧是产生大量的温室气体,改变了整个社会的生态环境,为了缩小社会差距,减小贫富差距,共同发展经济,维护社会稳定,保护环境,稳定社会粮食安全,巴西可以放弃或尽可能少用生物能源,加大科技投入,发展风力,太阳能发电,潮汐能发电等新能源开发。

❺ 巴西南北方能源供需方面的差异

巴西,这个“被上帝吻过的国度”拥有令全世界艳羡的矿产、土地、森林及水利资源,森林覆盖率达62%,广袤的亚马逊热带雨林更是被誉为“世界之肺”,生态环境极佳。丰富的水电支撑着巴西全国3/4的电量供应,生物燃油供应体系全球领先,这些因素促使巴西作为世界第七大经济体、第十大能源消费国,依然能够在当前仍然以化石能源为主的世界能源供应格局中,保持可再生能源消费第一大国地位,能源的生态效益显着。
2017年,巴西的可再生能源占能源消费比重达43.2%,是全球平均水平的3倍以上。而随着大型深海油田的探明,巴西也由曾经的贫油国跃升至南美第二大石油生产国,实现能源自给的同时也使其以生态为特征的能源版图更加完整,进而利用深海石油、生物燃料等生态资源参与全球能源治理,巴西能源的“生态”之光尽显无遗。
巴西能源战略的形成与发展
巴西虽然坐拥丰富的生态资源,但真正意识到这些资源的宝贵之处还要“归功于”上个世纪的石油危机。在此之前,无论是发展单一种植业的“咖啡王国”时期,还是高举“巴西化”的工业扩张时期,巴西的能源战略都较为单一。尤其是20世纪中期,军政领导下的巴西实施“进口替代”战略,开启了巴西大规模工业化。经济高速增长的同时也不断刷新着巴西的石油消费量,对外依存度最高时达90%。随之而来的两次石油危机,彻底终结了这一时期斐然国际的“巴西奇迹”,并进一步诱发了巴西的债务危机、经济危机、社会危机和政治危机,危及整个国家的稳定。内忧外困下的巴西政府也深刻认识到单一能源体系的脆弱性,于是将丰富本国能源供应体系、降低进口石油的战略目光逐步转移到本国富饶的生态资源上。
首先,巴西利用自身盛产甘蔗等生物原料的独特优势,开启了“生物燃料革命”。1975年,巴西推出了世界上最大的化石燃料替代方案“国家乙醇燃料计划”,通过补贴、减税、低息贷款等财政手段激励制糖厂提高蒸馏乙醇的产能,并强制乙醇与汽油混合使用,添加比例由最初的7.5%最高提高至27%;同时大力推行“灵活燃料”汽车,巴西的乙醇汽车数量一度占到全国汽车总量的90%以上。继生物乙醇后,巴西又提出了“国家生物柴油计划”,利用大豆、蓖麻、向日葵等生物原料生产柴油,并逐步探索出另一条能源替代道路。“生物乙醇计划”和“生物柴油计划”的成功实施,使得巴西成为世界第二大生物燃料生产国和消费国,2017年巴西生物燃料产量占全球的22%。
其次,在推进“国家生物乙醇计划”的同时期,巴西进一步加快了水电开发的步伐,陆续修建了伊泰普、图库鲁伊等具有跨时代意义的大型水电站。至今,伊泰普水电站仍以1400万千瓦装机容量、约900亿千瓦时年发电量保持着世界第二大水电站的殊荣。经过近半个世纪的发展,巴西已成为全球水电比重最高的国家之一,截至2017年,巴西水电装机达电力总装机容量的64%,提供全国约七成以上的电量需求。
第三,在石油危机后巴西将油气勘探开发的重点投向了海洋,并从体制机制和技术创新等方面进行了一系列革新。一方面推进石油私有化改革,开放石油市场,引进国外资金和技术;另一方面加强深海勘探技术的科研投入,实施“深水油田开采技术创新和开发计划”,走核心技术自主研发道路。随着国外资本的注入及相关技术的成熟,巴西在海洋油气勘探开发领域取得巨大成功,2006年巴西的石油日均产量已达191万桶,完全实现自给。时任巴西总统卢拉曾说“巴西实现石油自给就如巴西再次获得独立一样,将书写新的历史”。事实也正像卢拉所说,随后发现的巴西大西洋海域盐下层超深水油田,被认为是新千年以来世界上最大的石油发现,保守储量估计约为500亿桶。巴西也由此从一个中等产油国跻身全球产油国十强,IEA甚至预测到2035年,巴西的石油产量将占到全球新增供应量的1/3。
巴西的能源版图在生物燃料、水力发电、深海石油“三驾马车”的引领下不断丰富和完善。2010年后,巴西凭借优质的生态资源,其风电和太阳能发电发展迅速,装机容量分列世界第八和第十位,并与传统的水电、生物质发电形成良性互补,在全球的清洁能源发电领域可为风光无限。
巴西能源战略的成就与隐患
巴西突出生态特征的能源战略,不仅成功扭转其对进口石油的依赖,由“贫油国”变为“富油国”,基本实现能源独立;而且优化了本国能源结构,促进了能源清洁化、多元化发展;更在经济社会发展、能源技术创新、国际话语权提升等方面作用凸显,巴西的大国之梦也被重新唤醒。
在经济社会发展方面,通过能源战略的及时调整与实施强有力地支撑了巴西经济从由石油危机引发的“失去的10年”阴影中逐渐走出,并且作为国家的重要支柱产业,相关能源产业也带动“新巴西计划”“雷亚尔计划”等一系列国家战略的实现,推动巴西现代化工业和社会建设快速发展。尤其是生物燃料行业的蓬勃发展,对于巴西广大农村解决就业、缓解贫富差距、促进社会和谐发展方面意义重大。据统计,每加工100万吨甘蔗生产乙醇,相当于提供5683个工作岗位,虽然大多数工作附加值并不高,但在农村甘蔗工人一度是福利最好的工作。
在科技创新方面,巴西能源的“三驾马车”的核心技术在各自领域都处于世界领先水平。巴西的生物乙醇技术一直保持国际领先,并与美国、欧盟一同设立国际标准,共同扩大全球生物燃料市场,提高国际话语权的同时获取巨大经济利益。同时,巴西也在积极开发以各种稻草、蔗渣等农业废弃物为原料的纤维素乙醇技术,以期在第二代生物燃料技术上依旧保持全球引领地位。而作为水电大国,巴西无论是大型水电站还是小水电都有雄厚的技术储备,并在我国水电发展过程中给予很多帮助,曾派专家参与我国三峡水电站的建设。另外,通过数十年的努力,巴西深海石油勘探和生产技术也跃居世界领先地位,曾两次获海洋钻探技术委员会(OTC)颁发的“深海石油开采技术”证书。深水工程技术能力形成后,不仅在巴西海域相继发现大型油气田,而且成功进入墨西哥湾、非洲、澳洲等全球市场,为其深水工程技术提供了更为广阔的市场空间。
在能源外交方面,突出生态特征的能源战略成功唤醒了巴西人骨子里的大国意识与大国抱负。一方面立足拉美,以能源作为各国利益的结合点和粘合剂,积极倡导拉美能源一体化,主导建立南方共同市场,增强其在拉美的政治影响力;另一方面积极与世界接轨,与美国打造“乙醇欧佩克”,加强与欧盟的新能源和石油贸易,积极开拓亚太能源市场,与中国、印度、俄罗斯、南非并称“金砖五国”,形成全球最大的新兴市场;尤为重要的是,随着气候变化问题逐渐成为国际政治舞台上各国博弈的焦点,“生态”之光照耀下的巴西在全球碳减排格局中地位凸显,在全球气候变化谈判中占有重要一席。
发展“生态”能源虽然给巴西带来诸多实惠,但从其发展过程看并非一帆风顺,尤其是看重“开源”轻视“节流”的开发方式,使得“生态”能源的可持续发展存在诸多隐患。
首先,“生态”能源虽然在“消费环节”更加清洁,但在“生产环节”却在严重考验着巴西生态环境的承受力,在近似“掠夺”的开发方式下,优质的生态资源也不堪重负。生物燃料的快速发展,使得甘蔗种植面积急剧扩张,导致亚马逊森林砍伐加剧,根据世界银行的统计数据,近30年时间巴西森林面积缩小了约53.16万平方公里,近似于英国与意大利的国土面积之和。森林面积的缩小间接导致巴西降雨减少,水电站蓄水位下降,从而引发了现实的供电不足;同时也使巴西的碳减排大国名不副实。因为不同于其他国家,巴西的碳排放主要来自于能源生产,而非能源消费,尤其是森林采伐、农业、土地耕作所产生的二氧化碳占到巴西碳排放总量的3/4,因此生物燃料虽然“清洁”了末端,却“污染”了源头。
其次,以资源为主的“生态”能源本质上有其局限性和脆弱性。虽然巴西海域“盐下层”石油储量丰富,但受海洋环境及实际开采成本的约束,加之近几年巴西石油公司自己的债台高筑,想要依靠盐下层石油“变现”并非易事。而生物燃料行业本身具有脆弱性。一方面易受国际糖价和油价的影响,上世纪80年代就出现因糖价上涨、油价暴跌导致生物乙醇行业大萧条;另一方面,生物燃料的主要原料甘蔗等易受气候影响,为了保证产量,采伐森林、占用粮食耕地成为常态,由此引发的粮食问题、劳工问题广受诟病。在水力发电方面,巴西部分地区的持续高温和旱灾将水力发电的局限性暴露无遗,一方面是不断飙升的用电需求,另一方面是水电站缺水,加之巴西“老迈”的电力系统整体安全裕度较低,使得“巴西大停电”成为国际能源电力领域的高频词汇。
虽然巴西政府也逐渐认识到“资源型”能源战略的“软肋”,并从资源开发模式、加强生态修复等方面作出调整,但其政策上连贯性不足。尤其是极右翼候选人博索纳罗当选新一任巴西总统后,其对于石油电力领域私有化的担忧、允许开垦亚马逊雨林、甚至退出“巴黎协定”等一系列“狂人讲话”,使得未来巴西以生态为特征的能源发展蒙上阴影。
中巴能源合作前景
我国与巴西同为“金砖国家”,且分别是东西半球最大的发展中国家,两国的能源合作具有天然的互补性与战略性,尤其是在海洋油气、电力、新能源产业等领域,发展潜力巨大。
在海洋石油领域,中巴原油贸易量逐年攀升,2015年我国已超越美国成为巴西石油的最大买家,而以“贷款换石油”不仅让我国获得稳定的原油进口,又为巴西注入充裕资金拉动经济增长,实现双赢。随着我国“蛟龙号”等深海勘探领域的突破,两国在未来海洋能源的探索和开发等方面的合作前景广阔。
在电力领域,中巴两个水电大国有诸多“不解之缘”。三峡集团通过“参股合作、资产并购”等方式深度参与巴西水电开发,目前三峡巴西公司已成为巴西第二大私营发电企业;而负荷中心远离能源基地的特性为我国特高压输电技术提供了施展空间。2017年12月投运的国家电网巴西美丽山项目一期工程完成了我国特高压技术的海外首秀,也标志着中巴电力合作进入新的历史发展阶段。
在新能源领域,巴西作为推动全球生物燃料产业发展的先锋,在生物燃料的开发和利用上破解了一系列关键性技术和产业化难题,可为我国通过发展生物质能源丰富能源多样性、推动农村能源革命提供有益参考;而巴西作为风电、光伏发电的新兴市场,其广阔的市场空间为我国相关产业“走出去”提供了重要机遇。
总体看,虽然未来中巴能源合作可能面临资源民主主义、文化制度差异、法律法规制约、党派博弈及美国干扰等不确定性因素的挑战,但同为崛起中的全球性发展中大国,走“生态优先、绿色发展”的能源之路必将符合本国发展的长远利益,也是向全世界展示“大国担当”的重要窗口;而两国在能源资源、能源技术等方面天然的互补性与互利性,决定着两国能源合作前景大有可为,这将不仅有利于各自国内经济发展,而且对中拉能源合作乃至“南南能源合作”都具有极强的示范效应,可谓惠本国而利天下。

❻ 巴西面积大人口多,地理位置好,为什么就是发展不起来

巴西发展不起来是由于其独特的气候条件和历史原因导致的。对于一个国家的发展来说,一个优势的地理位置条件十分的重要,比如说新加坡,港口城市,就是因为地处马六甲海峡导致了新加坡的极速发展,虽然地理位置占据了很重要的位置,但是单纯的地理位置无法支撑起一个国家的飞速发展,巴西就是最好的例子,作为地理位置来说巴西绝对是拥有得天独厚的条件,拥有着多个世界级的港口,而且紧邻大西洋,能够通过大西洋和欧洲交易,但是我们都知道,巴西的经济发展的却不怎么样,这是为什么了?

一个国家想要成为世界强国,必然不是因为某一个原因成为世界上的强国,都是多方面的原因导致的,对于现在的国家来说,想要成为世界强国,就要不断的增强自身的科技实力,对巴西来说是如此,对我们中国来说也是如此。

❼ 太阳能热水器的发展经历了4个阶段:

第一阶段:1897年,第一个太阳能热水器专利在美国诞生,用的是黑油漆吸收太阳能。此阶段可以算作是雏形阶段,大概时间可以算作是1920年以前,而1920年以后的近30年内,二次世界大战爆发,矿物能源的开发占主导地位。
第二阶段:1955年以色列泰伯等在第一次国拍睁神际太阳热科学会议上提出选择性涂层的基础理论,并研制成实用的黑镍等选择性涂层,为高效集热器的发展创造了条件。1960年,在美国佛罗里达建成世界上第一套用平板集热器供热的氨——袭亏水吸收式空调系统,制冷能力为5冷吨。1965年以后的10年,太阳能的研制工作停滞不前,主要原因是太阳能利用技术处于成长阶段,尚不成熟,并且投资大,效果不理想,难以与常规能源竞争,因而得不到公众、企业和政府的重视和支持。这个时期内,我国的平板集热器(热水器)遭遇了第一次成型的失败。
第三阶段:1973年,中东战争爆发,能源危机(也叫石油危机)受到重视,世界各国出现了开发太阳能的热潮,此后的20年,太阳能开发利用工作处于前所未有的大发展时期,集热管等成果在这个时期出现。热水器也逐步走向成熟化和商业化。而80年代后10年,太阳能发展又进入低谷,主要原因是:世界石油价格大幅度回落,而太阳能产品价格居高不下,缺乏竞争力;太阳能技术没有重大突破,提高效率和降低成本的目标没有实现,以致动摇了一些人开发利用太阳能的信心;核电发展较快,对太阳能的发展起到了一定的抑制作用。早李但研发工作在大量削减的研发经费等不利影响下,并未停止。
第四个阶段:1992年世界环境与发展大会在巴西召开,各国对太阳能的研发重新重视,太阳能光热在我国推广成为典范,走了特色的低端线路:太阳能热水器。

❽ 从发展到衰落,巴西是如何一步步迈入“资源陷阱”的

2008年的金融危机是一场席卷全世界的经济震荡,对巴西更是一场致命的打击,原油、铁矿石等大宗商品价格暴跌,巴西经济与资源的过度捆绑,自然也得接受经济随价格波动的命运,这也是巴西经济大起大落的背景,也是近十年来巴西经济持续低迷的原因。

“成也萧何,败也萧何”,单纯依赖资源输出虽然可以在短时间内创造繁荣,但归根结底创新才是第一生产力,只有将赚钱的本领牢牢掌握在自己手中,才能保证经济的持续繁荣。

阅读全文

与巴西为什么不发展太阳能相关的资料

热点内容
金华义乌国际商贸城雨伞在哪个区 浏览:756
俄罗斯如何打通飞地立陶宛 浏览:1132
韩国如何应对流感 浏览:915
在德国爱他美白金版卖多少钱 浏览:956
澳大利亚养羊业为什么发达 浏览:1387
如何进入法国高等学府 浏览:1467
巴西龟喂火腿吃什么 浏览:1400
巴西土地面积多少万平方千米 浏览:1262
巴西龟中耳炎初期要用什么药 浏览:1224
国际为什么锌片如此短缺 浏览:1628
巴西是用什么规格的电源 浏览:1449
在中国卖的法国名牌有什么 浏览:1354
在菲律宾投资可用什么样的居留条件 浏览:1263
德国被分裂为哪些国家 浏览:872
澳大利亚跟团签证要什么材料 浏览:1203
德国大鹅节多少钱 浏览:871
去菲律宾过关时会盘问什么 浏览:1195
澳大利亚女王为什么是元首 浏览:1021
有什么免费的韩国小说软件 浏览:753
申请德国学校如何找中介 浏览:660