1. 物理学系留学读研究生去德国好还是法国好
还是德国吧,虽然程序麻烦一点,但是都是按照规矩来。
法国有些步骤要看人品的,比如签证。
2. 巴黎高师核物理专业怎样
还不错,法国的核物理还是不错的
3. 里昂一大(法国前5)物理系,毕业后在法国找工作的概率多大那位能告诉我,谢谢。
中国人在法国学理科的出路一般都是读博做博后。法国失业率一直很高,外国人找工作很难。毕业生找工作一般都是通过签约咨询公司这样类似中介的机构,极少有公司愿意直接聘请一个毕业生。
我是读工程师的,从我知道的一百来个分散在全法国的同届中国人来说,回国的比率在一半,读博的比例在三分之一,剩下的极少数是在毕业两年之内找到稳定工作的(理论上硕士或工程师毕业可续签半年长居,还有人选择毕业后辅修以延长找工作时间)。
4. 法国物理学家菲佐是如何测量光速的
罗默的卫星蚀法
光速的测量,首先在天文学上获得成功,这是因为宇宙广阔的空间提供了测量光速所需要的足够大的距离.早在1676年丹麦天文学家罗默(1644— 1710)首先测量了光速.由于任何周期性的变化过程都可当作时钟,他成功地找到了离观察者非常遥远而相当准确的“时钟”,罗默在观察时所用的是木星每隔一定周期所出现的一次卫星蚀.他在观察时注意到:连续两次卫星蚀相隔的时间,当地球背离木星运动时,要比地球迎向木星运动时要长一些,他用光的传播速度是有限的来解释这个现象.光从木星发出(实际上是木星的卫星发出),当地球离开木星运动时,光必须追上地球,因而从地面上观察木星的两次卫星蚀相隔的时间,要比实际相隔的时间长一些;当地球迎向木星运动时,这个时间就短一些.因为卫星绕木星的周期不大(约为1.75天),所以上述时间差数,在最合适的时间(上图中地球运行到轨道上的A和A’两点时)不致超过15秒(地球的公转轨道速度约为30千米/秒).因此,为了取得可靠的结果,当时的观察曾在整年中连续地进行.罗默通过观察从卫星蚀的时间变化和地球轨道直径求出了光速.由于当时只知道地球轨道半径的近似值,故求出的光速只有214300km/s.这个光速值尽管离光速的准确值相差甚远,但它却是测定光速历史上的第一个记录.后来人们用照相方法测量木星卫星蚀的时间,并在地球轨道半径测量准确度提高后,用罗默法求得的光速为299840±60km/s.
2.布莱德雷的光行差法
1728年,英国天文学家布莱德雷(1693—1762)采用恒星的光行差法,再一次得出光速是一有限的物理量.布莱德雷在地球上观察恒星时,发现恒星的视位置在不断地变化,在一年之内,所有恒星似乎都在天顶上绕着半长轴相等的椭圆运行了一周.他认为这种现象的产生是由于恒星发出的光传到地面时需要一定的时间,而在此时间内,地球已因公转而发生了位置的变化.他由此测得光速为:
C=299930千米/秒
这一数值与实际值比较接近.
以上仅是利用天文学的现象和观察数值对光速的测定,而在实验室内限于当时的条件,测定光速尚不能实现.
二、光速测定的大地测量方法
光速的测定包含着对光所通过的距离和所需时间的量度,由于光速很大,所以必须测量一个很长的距离和一个很短的时间,大地测量法就是围绕着如何准确测定距离和时间而设计的各种方法.
1.伽利略测定光速的方法
物理学发展史上,最早提出测量光速的是意大利物理学家伽利略.1607年在他的实验中,让相距甚远的两个观察者,各执一盏能遮闭的灯,如图所示:观察者A打开灯光,经过一定时间后,光到达观察者B,B立即打开自己的灯光,过了某一时间后,此信号回到A,于是A可以记下从他自己开灯的一瞬间,到信号从B返回到A的一瞬间所经过的时间间隔t.若两观察者的距离为S,则光的速度为
c=2s/t
因为光速很大,加之观察者还要有一定的反应时间,所以伽利略的尝试没有成功.如果用反射镜来代替B,那么情况有所改善,这样就可以避免观察者所引入的误差.这种测量原理长远地保留在后来的一切测定光速的实验方法之中.甚至在现代测定光速的实验中仍然采用.但在信号接收上和时间测量上,要采用可靠的方法.使用这些方法甚至能在不太长的距离上测定光速,并达到足够高的精确度.
2.旋转齿轮法
用实验方法测定光速首先是在1849年由斐索实验.他用定期遮断光线的方法(旋转齿轮法)进行自动记录.实验示意图如下.从光源s发出的光经会聚透镜L1射到半镀银的镜面A,由此反射后在齿轮W的齿a和a’之间的空隙内会聚,再经透镜L2和L3而达到反射镜M,然后再反射回来.又通过半镀镜A由 L4集聚后射入观察者的眼睛E.如使齿轮转动,那么在光达到M镜后再反射回来时所经过的时间△t内,齿轮将转过一个角度.如果这时a与a’之间的空隙为齿 a(或a’)所占据,则反射回来的光将被遮断,因而观察者将看不到光.但如齿轮转到这样一个角度,使由M镜反射回来的光从另一齿间空隙通过,那么观察者会重新看到光,当齿轮转动得更快,反射光又被另一个齿遮断时,光又消失.这样,当齿轮转速由零而逐渐加快时,在E处将看到闪光.由齿轮转速v、齿数n与齿轮和M的间距L可推得光速c=4nvL.
在斐索所做的实验中,当具有720齿的齿轮,一秒钟内转动12.67次时,光将首次被挡住而消失,空隙与轮齿交替所需时间为
在这一时间内,光所经过的光程为2×8633米,所以光速c=2×8633×18244=3.15×108(m/s).
在对信号的发出和返回接收时刻能作自动记录的遮断法除旋转齿轮法外,在现代还采用克尔盒法.1941年安德孙用克尔盒法测得:c=299776±6km/s,1951年贝格斯格兰又用克尔盒法测得c=299793.1±0.3km/s.
3.旋转镜法
旋转镜法的主要特点是能对信号的传播时间作精确测量.1851年傅科成功地运用此法测定了光速.旋转镜法的原理早在1834年1838年就已为惠更斯和阿拉果提出过,它主要用一个高速均匀转动的镜面来代替齿轮装置.由于光源较强,而且聚焦得较好.因此能极其精密地测量很短的时间间隔.实验装置如图所示.从光源s所发出的光通过半镀银的镜面M1后,经过透镜L射在绕O轴旋转的平面反射镜M2上O轴与图面垂直.光从M2反射而会聚到凹面反射镜M3上, M3的曲率中心恰在O轴上,所以光线由M3对称地反射,并在s′点产生光源的像.当M2的转速足够快时,像S′的位置将改变到s〃,相对于可视M2为不转时的位置移动了△s的距离可以推导出光速值:
式中w为M2转动的角速度.l0为M2到M3的间距,l为透镜L到光源S的间距,△s为s的像移动的距离.因此直接测量w、l、l0、△s,便可求得光速.
在傅科的实验中:L=4米,L0=20米,△s=0.0007米,W=800×2π弧度/秒,他求得光速值c=298000±500km/s.
另外,傅科还利用这个实验的基本原理,首次测出了光在介质(水)中的速度v<c,这是对波动说的有力证据.
3.旋转棱镜法
迈克耳逊把齿轮法和旋转镜法结合起来,创造了旋转棱镜法装置.因为齿轮法之所以不够准确,是由于不仅当齿的中央将光遮断时变暗,而且当齿的边缘遮断光时也是如此.因此不能精确地测定象消失的瞬时.旋转镜法也不够精确,因为在该法中象的位移△s太小,只有0.7毫米,不易测准.迈克耳逊的旋转镜法克服了这些缺点.他用一个正八面钢质棱镜代替了旋转镜法中的旋转平面镜,从而光路大大的增长,并利用精确地测定棱镜的转动速度代替测齿轮法中的齿轮转速测出光走完整个路程所需的时间,从而减少了测量误差.从1879年至1926年,迈克耳逊曾前后从事光速的测量工作近五十年,在这方面付出了极大的劳动. 1926年他的最后一个光速测定值为
c=299796km/s
这是当时最精确的测定值,很快成为当时光速的公认值.
三、光速测定的实验室方法
光速测定的天文学方法和大地测量方法,都是采用测定光信号的传播距离和传播时间来确定光速的.这就要求要尽可能地增加光程,改进时间测量的准确性.这在实验室里一般是受时空限制的,而只能在大地野外进行,如斐索的旋轮齿轮法当时是在巴黎的苏冷与达蒙玛特勒相距8633米的两地进行的.傅科的旋转镜法当时也是在野外,迈克耳逊当时是在相距35373.21米的两个山峰上完成的.现代科学技术的发展,使人们可以使用更小更精确地实验仪器在实验室中进行光速的测量.
1.微波谐振腔法
1950年埃森最先采用测定微波波长和频率的方法来确定光速.在他的实验中,将微波输入到圆柱形的谐振腔中,当微波波长和谐振腔的几何尺寸匹配时,谐振腔的圆周长πD和波长之比有如下的关系:πD=2.404825λ,因此可以通过谐振腔直径的测定来确定波长,而直径则用干涉法测量;频率用逐级差频法测定.测量精度达10-7.在埃森的实验中,所用微波的波长为10厘米,所得光速的结果为299792.5±1km/s.
2.激光测速法
1790年美国国家标准局和美国国立物理实验室最先运用激光测定光速.这个方法的原理是同时测定激光的波长和频率来确定光速(c=νλ).由于激光的频率和波长的测量精确度已大大提高,所以用激光测速法的测量精度可达10-9,比以前已有最精密的实验方法提高精度约100倍.
四、光速测量方法一览表
除了以上介绍的几种测量光速的方法外,还有许多十分精确的测定光速的方法.现将不同方法测定的光速值列为“光速测量一览表”供参考.
根据1975年第十五届国际计量大会的决议,现代真空中光速的最可靠值是:
c=299792.458±0.001km/s
声速测量仪必须配上示波器和信号发生器才能完成测量声速的任务。实验中产生超声波的装置如图所示。它由压电陶瓷管或称超声压电换能器与变幅杆组成;当有交变电压加在压电陶瓷管上时,由于压电体的逆压电效应,使其产生机械振动。此压电陶瓷管粘接在铝合金制成的变幅杆上,经过电子线路的放大,即成为超声波发生器,由于压电陶瓷管的周期性振动,带动变幅杆也做周期轴向振动。当所加交变电压的频率与压电陶瓷的固有频率相同时,压电陶瓷的振幅最大,这使得变幅杆的振幅也最大。变幅杆的端面在空气中激发出纵波,即超声波。本仪器的压电陶瓷的振荡频率在40kHz以上,相应的超声波波长约为几毫米,由于他的波长短,定向发射性能好,本超声波发射器是比较理想的波源。由于变幅杆的端面直径一般在20mm左右,比此波长大很多,因此可以近似认为离开发射器一定距离处的声波是平面波。超声波的接受器则是利用压电体的正压电效应,将接收的机械振动,转化成电振动,为使此电振动增强。特加一选频放大器加以放大,再经屏蔽线输给示波器观测。接收器安装在可移动的机构上,这个机构包扩支架、丝杆、可移动底座(其上装有指针,并通过定位螺母套在丝杆上,有丝杆带动作平移)、带刻度的手轮等。接收器的位置由主、尺刻度手轮的位置决定。主尺位于底座上面;最小方尺位于底坐上面;最小分尺为1mm,手轮与丝杆相连上分为100分格,每转一周,接收器平移1mm,故手每一小格为0.01mm,可估到0.001mm。
5. 巴黎高师物理系在美国能排多少位置能进前三十吗
法国的教育系统很特别,其他国家很难了解法国的教育系统。巴黎高师是法国的顶尖名校。但很难按照美国的方式来排名,其中一个重要原因是它太小。系科也不完全(只有文理两科)。但就文理两个而言,巴黎高师都能进美国的前三十。但理科声誉主要是数学带来的,物理没有那么崇高的地位。至于在美国的大体排名很好难说。
6. 法国物理学家都有哪些
太多了,德布罗意,笛卡尔,朗之万,傅立叶,库伦,庞加莱,安培,奈尔,利尔普,居里家族等
7. 研究生阶段物理学专业去法国留学好还是德国呢。。要求都高吗
法国公立综合大学本科三年,研究生两年。法语授课,学生一般先在法国学习半年到一年半不等的预科或者语言,再进入到专业学习。如果是工程师学院,国内本科毕业生一般是一年的预科再搭配两年的专业阶段,三年结束后拿到研究生文凭以及工程师文凭,但是工程师学院对学生的专业背景以及学校都有严格要求,入学门槛比较高。
法国很多学校都有开设物理相关专业。在巴黎地区,巴黎十一大是有名的理工科学校。蒙彼利埃大学综合理工学院也是一所很不错的理工学院。
留学法国,只需签证前能够提供B1左右的法语成绩就可以,达到这个水平,一般从零基础系统学习500到600学时,大概4个月左右的法语。
法语授课项目不需要提供英语成绩。
8. 在欧洲做理论物理(特别是统计物理)博士是怎样的体验
据在欧洲(德国)又来美国做理论物理(凝聚态)的朋友的(有限)了解,欧洲那边做东西同美国比较还是要更 neat 一些,美国比较喜欢钻热点,风格也不那么严谨。据说欧洲那边比较强调学生能独立完成一个项目,所以似乎不利于那些想要狂发 paper 的人,但是做出来的东西一般比较漂亮,也很有成就感。“除了科研本身以外,制度上、教授的指导风格、工作氛围方面”要是这些的话那个数学问题下的答案描述得很清楚了,一般不会逼得太紧,相对轻松些,也没有什么特别的,还是要去做出工作,理科上面没有太多的区别的,还是多看看项目和导师吧,这些不用担心的.
9. 法国物理专业较好的大学有哪些
您的法语可以吗?如果可以的话
据我了解 巴黎十一大 十三大 波尔多一大物理类 都不错相对于巴黎其学校物理科目 ...
10. 物理学家毕奥和萨伐尔都哪个国家的
首先萨伐尔不是人名 是 毕奥的发明的定律。
让-巴蒂斯特·毕奥(1774年4月21日-1862年2月3日),毕业于法国着名的工程学校巴黎综合理工学院,法国物理学家、天文学家和数学家。与萨伐尔共同提出毕奥-萨伐尔定律。曾恪守电与磁无关系的看法,后支持奥斯特。
1800年,他成为法国一所大学的物理学教授。他研究了通过溶液的光的偏振,以及电流和磁场之间的关系。毕奥-萨伐尔定律,描述了由一个稳定的电流所产生的磁场,就是以他和菲利克斯·沙伐命名的。
虽然毕奥比傅立叶年轻,但他比傅立叶更早对导热进行研究,大概在1802年至1803年间就已开始。
1804年,毕奥根据平壁导热的实验,发表学术论文,提出了导热量正比于两侧温差、反比于壁厚的概念。傅立叶是在阅读此篇文章后,在1807年提出求解偏微分方程的分离变量法和可以将解表示成一系列任意函数的概念。
在1804年,他和伙伴约瑟夫·路易·盖-吕萨克(Gay Lusac)一起,采用热气球来作科学实验,上升到了五千米的高度,目的是为了研究地球的大气层。
1820年,他和Felix Savart共同研究,发现了“Biot-Savart定律”。他对光的偏振现象尤为感兴趣,由于他的卓越成就,1840年,他获得皇室社会颁布的拉姆福德奖章。1862年2月3日,他在巴黎逝世。
在毕奥的后半生,巴斯德向他演示了偏振光通过镜像晶体的水溶液时的反方向旋光(角度相同,但方向相反)。
月球上有一个陨石坑是以毕奥命名的。
毕奥是第一个发现云母独特的光学性质,因此以云母为基础的矿物黑云母就是以他命名的。
在传热学中,为纪念毕渥,有相应的毕渥数。Bi=h*V/(k*A),毕渥数反映了物体对流热阻与导热热阻相对大小关系。[1] 、
毕奥-萨伐尔定律
在静磁学中,毕奥-萨伐尔定律(英文:Biot-Savart Law)描述电流元在空间任意点P处所激发的磁场。
定律文字描述:电流元Idl 在空间某点P处产生的磁感应强度dB 的大小与电流元Idl 的大小成正比,与电流元Idl 所在处到 P点的位置矢量和电流元Idl 之间的夹角的正弦成正比, 而与电流元Idl 到P点的距离的平方成反比。