导航:首页 > 德国资讯 > 德国如何提高氢气生产能力

德国如何提高氢气生产能力

发布时间:2022-06-27 07:56:55

‘壹’ 有关氢能的知识

氢能
开放分类: 氢能

什么是氢能

氢能在二十一世纪有可能在世界能源舞台上成为一种举足轻重的二次能源。它是一种极为优越的新能源,其主要优点有:燃烧热值高,每千克氢燃烧后的热量,约为汽油的3倍,酒精的3.9倍,焦炭的4.5倍。燃烧的产物是水,是世界上最干净的能源。资源丰富,氢气可以由水制取,而水是地球上最为丰富的资源,演义了自然物质循环利用、持续发展的经典过程。

前景
[编辑本段]

氢是宇宙中分布最广泛的物质,它构成了宇宙质量的75%,因此氢能被称为人类的终极能源。水是氢的大“仓库”,如把海水中的氢全部提取出来,将是地球上所有化石燃料热量的9000 倍。氢的燃烧效率非常高,只要在汽油中加入4% 的氢气,就可使内燃机节油40%。目前,氢能技术在美国、日本、欧盟等国家和地区已进入系统实施阶段。美国政府已明确提出氢计划,宣布今后4年政府将拨款17亿美元支持氢能开发。美国计划到2040年美国每天将减少使用1100万桶石油,这个数字正是现在美国每天的石油进口量。
——————————————————————————————————
氢能 【hydrogen energy】 通过氢气和氧气反应所产生的能量。氢能是氢的化学能,氢在地球上主要以化合态的形式出现,是宇宙中分布最广泛的物质,它构成了宇宙质量的75%。由于氢气必须从水、化石燃料等含氢物质中制得,因此是二次能源。工业上生产氢的方式很多,常见的有水电解制氢、煤炭气化制氢、重油及天然气水蒸气催化转化制氢等。氢能具有以下主要优点:燃烧热值高,每千克氢燃烧后的热量,约为汽油的3倍,酒精的3.9倍,焦炭的4.5倍。燃烧的产物是水,是世界上最干净的能源。资源丰富,氢气可以由水制取,而水是地球上最为丰富的资源。目前,氢能技术在美国、日本、欧盟等国家和地区已进入系统实施阶段。

氢能的开发与利用
[编辑本段]

氢能利用各方面
氢能利用方面很多,有的已经实现,有的人们正在努力追求。为了达到清洁新能源的目标,氢的利用将充满人类生活的方方面面,我们不妨从古到今,把氢能的主要用途简要叙述一下。
依靠氢能可上天
古代,秦始皇统一中国,他想长生不老,曾积极支持炼丹术。其实炼丹术士最早接触的就是氢的金属化合物。无奈多少帝王梦想长生不老,或幻想遨游太空,都受当时的科学技术水平所限,真是登天无梯。到后来,1869年俄国着名学者门捷列夫整理出化学元素周期表,他把氢元素放在周期表的首位,此后从氢出发,寻找与氢元素之间的关系,为众多的元素打下了基础,人们则氢的研究和利用也就更科学化了。至1928年,德国齐柏林公司利用氢的巨大浮力,制造了世界上第一艘“LZ—127齐柏林”号飞艇,首次把人们从德国运送到南美洲,实现了空中飞渡大西洋的航程。大约经过了十年的运行,航程16万多公里,使1.3万人领受了上天的滋味,这是氢气的奇迹。
然而,更先进的是本世纪50年代,美国利用液氢作超音速和亚音速飞机的燃料,使B57双引擎辍炸机改装了氢发动机,实现了氢能飞机上天。特别是1957前苏联宇航员加加林乘坐人造地球卫星遨游太空和1963年美国的宇宙飞船上天,紧接着1968年阿波罗号飞船实现了人类首次登上月球的创举。这一切都依靠着氢燃料的功劳。面向科学的21世纪,先进的高速远程氢能飞机和宇航飞船,商业运营的日子已为时不远。过去帝王的梦想将被现代的人们实现。
利用氢能可开车
以氢气代替汽油作汽车发动机的燃料,已经过日本、美国、德国等许多汽世公司的试验,技术是可行的,目前主要是廉价氢的来源问题。氢是一种高效燃料,每公斤氢燃烧所产生的能量为33.6千瓦小时,几乎等于汽车燃烧的2.8倍。氢气燃烧不仅热值高,而且火焰传播速度快,点火能量低(容易点着),所以氢能汽车比汽油汽车总的燃料利用效率可高20%。当然,氢的燃烧主要生成物是水,只有极少的氮氧化物,绝对没有汽油燃烧时产生的一氧化碳、二氧化碳和二氧化硫等污染环境的有害成分。氢能汽车是最清洁的理想交通工具。
氢能汽车的供氢问题,目前将以金属氢化物为贮氢材料,释放氢气所需的热可由发动机冷却水和尾气余热提供。现在有两种氢能汽车,一种是全烧氢汽车,另一种为氢气与汽油混烧的掺氢汽车。掺氢汽车的发动机只要稍加改变或不改变,即可提高燃料利用率和减轻尾气污染。使用掺氢5%左右的汽车,平均热效率可提高15%,节约汽油30%左右。因此,近期多使用掺氢汽车,待氢气可以大量供应后,再推广全燃氢汽车。德国奔驰汽车公司已陆续推出各种燃氢汽车,其中有面包车、公共汽车、邮政车和小轿车。以燃氢面包车为例,使用200公斤钛铁合金氢化物为燃料箱,代替65升汽油箱,可连续行车130多公里。德国奔驰公司制造的掺氢汽车,可在高速公路上行驶,车上使用的储氢箱也是钛铁合金氢化物。
掺氢汽车的特点是汽油和氢气的混合燃料可以在稀薄的贫油区工作,能改善整个发动机的燃烧状况。在我国许当城市交通拥挤,汽车发动机多处于部分负荷下运行、采用掺氢汽车尤为有利。特别是有些工业余氢(如合成氨生产)未能回收利用,若作为掺氢燃料,其经济效益和环境效益都是可取的。
燃烧氢气能发电
大型电站,无论是水电、火电或核电,都是把发出的电送往电网,由电网输送给用户。但是各种用电户的负荷不同,电网有时是高峰,有时是低谷。为了调节峰荷、电网中常需要启动快和比较灵活的发电站,氢能发电就最适合抢演这个角色。利用氢气和氧气燃烧,组成氢氧发电机组。这种机组是火箭型内燃发动机配以发电机,它不需要复杂的蒸汽锅炉系统,因此结构简单,维修方便,启动迅速,要开即开,欲停即停。在电网低负荷的,还可吸收多余的电来进行电解水,生产氢和氧,以备高峰时发电用。这种调节作用对于用网运行是有利的。另外,氢和氧还可直接改变常规火力发电机组的运行状况,提高电站的发电能力。例如氢氧燃烧组成磁流体发电,利用液氢冷却发电装置,进而提高机组功率等。
更新的氢能发电方式是氢燃料电池。这是利用氢和氧(成空气)直接经过电化学反应而产生电能的装置。换言之,也是水电解槽产生氢和氧的逆反应。70年代以来,日美等国加紧研究各种燃料电池,现已进入商业性开发,日本已建立万千瓦级燃料电池发电站,美国有30多家厂商在开发燃料电池.德、英、法、荷、丹、意和奥地利等国也有20多家公司投入了燃料电池的研究,这种新型的发电方式已引起世界的关注。
燃料电池的简单原最巧是将燃料的化学能直接转换为电能,不需要进行燃烧,能源转换效率可达60%—80%,而且污染少,噪声小,装置可大可小,非常灵活。最早,这种发电装置很小,造价很高,主要用于宇航作电源。现在已大幅度降价,逐步转向地面应用。目前,燃料电池的种类很多,主要有以下几种:
磷酸盐型燃料电池
磷酸盐型燃料电池是最早的一类燃料电池,工艺流程基本成熟,美国和日本已分别建成4500千瓦及11 000千瓦的商用电站。这种燃料电池的操作温度为200℃,最大电流密度可达到150毫安/平方厘米,发电效率约45%,燃料以氢、甲醇等为宜,氧化剂用空气,但催化剂为铂系列,目前发电成本尚高,每千瓦小时约40~50美分。
融熔碳酸盐型燃料电池
融熔碳酸盐型燃料电池一般称为第二代燃料电池,其运行温度650℃左右,发电效率约55%,日本三菱公司已建成10千瓦级的发电装置。这种燃料电池的电解质是液态的,由于工作温度高,可以承受一氧化碳的存在,燃料可用氢、一氧化碳、天然气等均可。氧化剂用空气。发电成本每千瓦小时可低于40美分。
固体氧化物型燃料电池
固体氧化物型燃料电池被认为是第三代燃料电池,其操作温度1000℃左右,发电效率可超过60%,目前不少国家在研究,它适于建造大型发电站,美国西屋公司正在进行开发,可望发电成本每千瓦小时低于20美分。
此外,还有几种类型的燃料电池,如碱性燃料电池,运行温度约200℃,发电效率也可高达60%,且不用贵金属作催化剂,瑞典已开发200千瓦的一个装置用于潜艇。美国最早用于阿波罗飞船的一种小型燃料电池称为美国型,实为离子交换膜燃料电池,它的发电效率高达75%,运行温度低于100℃,但是必需以纯氧作氧化剂。后来,美国又研制一种用于氢能汽车的燃料电池,充一次氢可行300公里,时速可达100公里,这是一种可逆式质子交换膜燃料电池,发电效率最高达80%。
燃料电池理想的燃料是氢气,因为它是电解制氢的逆反应。燃料电池的主要用途除建立固定电站外,特别适合作移动电源和车船的动力,因此也是今后氢能利用的孪生兄弟。
家庭用氢真方便
随着制氢技术的发展和化石能源的缺少,氢能利用迟早将进入家庭,首先是发达的大城市,它可以像输送城市煤气一样,通过氢气管道送往千家万户。每个用户则采用金属氢化物贮罐将氢气贮存,然后分别接通厨房灶具、浴室、氢气冰箱、空调机等等,并且在车库内与汽车充氢设备连接。人们的生活靠一条氢能管道,可以代替煤气、暖气甚至电力管线,连汽车的加油站也省掉了。这样清洁方便的氢能系统,将给人们创造舒适的生活环境,减轻许多繁杂事务
作为新能源,其安全性受到人们的普遍关注。从技术方面讲,氢的使用是绝对安全的。氢在空气中的扩散性很强,氢泄漏或燃烧时,可以很快地垂直升到空气中并消失得无影无踪,氢本身没有毒性及放射性,不会对人体产生伤害,也不会产生温室效应。科学家已经做过大量的氢能安全试验,证明氢是安全的燃料。如在汽车着火试验中,分别将装有氢气和天然汽油燃料罐点燃,结果氢气作为燃料的汽车着火后,氢气剧烈燃烧,但火焰总是向上得,对汽车的损坏比较缓慢,车内人员有较长得时间逃生,而天然燃料的汽车着火后,由于天然气比空气重,火焰向汽车四周蔓延,很快包围了汽车,伤及车内人员的安全。

‘贰’ “豪赌”氢能源!韩国现代加码氢燃料电池,德国押宝14亿欧元

一边是混合动力,一边是纯电动,当汽车的动力形式进入到了新的时代,路径之争就始终没有停歇过。

事实上,在终结内燃机的可行性方案没有得到彻底解决之前,这样的争论不可能停歇,且还衍生出了更多的备选,比如增程式、甲醇燃料、氢能源等等。

据外媒报道,2月26日,一位现代汽车高管表示,该公司及其下属企业准备在今年内决定氢燃料电池系统新工厂的选址。同一天,现代汽车集团燃料电池部门高管JeonSoon-il在东京举行的一个会议上表示,这座工厂将从2024年左右开始投产,具有每年生产10万套燃料电池系统的能力,其中包括燃料电池堆和动力控制单元。

多次爆炸事故,已经引发业界对于氢燃料电池汽车安全的关注和担忧,此前韩国居民团体爆发了抗议活动,不满政府在他们的居住地建设氢能相关设施,在日本也出现过类似的民众抗议。

另一方面,居高不下的成本,同样制约着氢燃料电池产业的发展。现阶段制氢成本居高不下,氢气的特殊性又导致它的运输成本高于其他燃料。

此外,一辆氢燃料电池车每百公里消耗的燃料费用是汽油车的3倍,柴油车的1.5倍,必须依靠大量的政府财政补贴做支撑,否则对于运营单位来说只能亏损。而对于车主来说,加氢站普及度较低,往往不敢远距离驾驶,还是和纯电动车一样只敢在市内开一开,实际体验并不好。

多因素交织在一起,使得氢燃料电池在目前的大环境下,面临的挑战会比纯电动车要大得多,推广阻力也会更大。

钟述

对于汽车行业而言,新能源时代的不确定性正在孕育一场即将到来的风暴,这就像是一场长跑,有耐力的人正准备把过去几年储备的力量在弯道释放,耐力差的人则只能寻求奋力一搏。

到底会洗掉谁?我们不得而知,只能静静观察。

图片源自网络,侵

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

‘叁’ 制氢的研究现状和发展前景

化石燃料有限的储量使人类正面临着前所未有的能源危机。同时其燃烧产物被排放到大气中加速了温室效应。氢气具有含量丰富、燃烧热值高、能量密度大、热效率高、清洁无污染以及输送成本低以及用途广泛等优点川,被认为最有可能成为化石燃料的替代能源。 氢气是一种理想的能源,具有转化率高、可再生和无污染等优点。与传统制氢方法相比,生物制氢技术的能耗低,对环境无害,其中的厌氧发酵生物制氢已经越来越受到人们的重视。主要介绍了厌氧发酵生物制氢技术的方法和机理,分析了生物制氢的可行性,结合国内外研究现状提出了未来的发展方向。 全球石油储量不断减少。最新研究表明:按目前全球消费趋势,球上可采集石油资源最多能使用到21世纪末。石化、燃煤能源使用,还带来严重大气环境污染,人们日益感觉到开发绿色可再生能源急迫性,研究和开发新能源被提到紧迫议事日程。2000年7—8月美国《未来学家》杂志刊登了美国乔治·华盛顿大学专家对21世纪前10年内十大科技发展趋势预测,其中第二条是燃料电池汽车问世,福特和丰田公司实验性燃料电池汽车将2004年上市。第九条是替代能源挑战石油能源,风能、太阳能、热、生物能和水力发电将占到全部能源需求30%。这两条实际上都是新型能源开发利用。我国“十五”国家重点开发技术项目中也将新型能源开发利用放极为重要位置。目前,人们对风能、太阳能开发已经有了相当研究,并已到了进行加以直接使用阶段,生物能研究也取了重要进展,如何将所获能量储存起来,如何将能量转化为交通工具可利用清洁高效能源,是一亟待解决重要课题。 内容摘要

2生物制氮技术研究进展

2.1传统制氢工艺方法

传统制氢工艺方法有:电解水;烃类水蒸汽重整制氢方法及重油(或渣油)部分氧化重整制氢方法。电解水方法制氢是目前应用较广且比较成熟方法之一。水为原料制氢工程是氢与氧燃烧生成水逆过程,提供一定形式一定能量,则可使水分解成氢气和氧气。提供电能使水分解制氢气效率一般75%-85%。其中工艺过程简单,无污染,但消耗电量大,其应用受到一定限制。目前电解水工艺、设备均不断改进,但电解水制氢能耗仍然很高。烃类水蒸汽重整制氢反应是强吸热反应,反应时需外部供热。热效率较低,反应温度较高,反应过程中水大量过量,能耗较高,造成资源浪费。重油氧化制氢重整方法,反应温度较高,制氢纯度低,利于能源综合利用。

2.2新型生物制氢工艺发展

氢气用途日益广泛,其需求量也迅速增加。传统制氢方法均需消耗大量不可再生能源,不适应社会发展需求。生物制氢技术作为一种符合可持续发展战略课题,已世界上引起了广泛重视。如德国、以色列、日本、葡萄牙、俄罗斯、瑞典、英国、美国都投入了大量人力物力对该项技术进行研究开发。近几年,美国每年生物制氢技术研究费用平均为几百万美元,而日本这研究领域每年投资则是美国5倍左右,,日本和美国等一些国家为此还成立了专门机构,并建立了生物制氢发展规划,以期对生物制氢技术基础和应用研究,使21世纪中叶使该技术实现商业化生产。日本,由能源部主持氢行动计划,确立最终目标是建立一个世界范围能源网络,以实现对可再生能源--氢有效生产,运输和利用。该计划从1993年到2020年横跨了28年。

生物制氢课题最先由Lewis于1966年提出,20世纪70年代能源危机引起了人们对生物制氢广泛关注,并开始进行研究。生物质资源丰富,是重要可再生能源。生物质可气化和微生物催化脱氢方法制氢。生理代谢过程中产生分子氢,可分为两个主要类群:

l、包括藻类和光合细菌内光合生物;Rhodbacter8604,R.monas2613,R.capsulatusZ1,R.sphaeroides等光合生物研究已经开展并取了一定成果。

2、诸如兼性厌氧和专性厌氧发酵产氢细菌。目前以葡萄糖,污水,纤维素为底物并不断改进操作条件和工艺流程研究较多。中国此方面研究也取了一些进展,任南形琪等1990年就开始开展生物制氢技术研究,并于1994年提出了以厌氧活性污泥为氢气原料有机废水发酵法制氢技术,利用碳水化合物为原料发酵法生物制氢技术。该技术突破了生物制氢技术必须采用纯菌种和固定技术局限,开创了利用非固定化菌种生产氢气新途径,并首次实现了中试规模连续流长期生产持续产氢。此基础上,他们又先后发现了产氢能力很高乙醇发酵类型发明了连续流生物制氢技术反应器,初步建立了生物产氢发酵理论,提出了最佳工程控制对策。该项技术和理论成果中试研究中到了充分验证:中试产氢能力达5.7m3H2/m3.d,制氢规模可达500-1000m3/m3,且生产成本明显低于目前广泛采用水电解法制氢成本。

生物制氢过程可以分为5类:

(1)利用藻类青蓝菌生物光解水法;

(2)有机化合物光合细菌(PSB)光分解法;

(3)有机化合物发酵制氢;

(4)光合细菌和发酵细菌耦合法制氢;

(5)酶催化法制氢。

目前发酵细菌产氢速率较高,对条件要求较低,具有直接应用前景。但PSB光合产氢速率比藻类快,能量利用率比发酵细菌高,且能将产氢与光能利用、有机物去除有机耦合一起,相关研究也最多,也是最具有潜应用前景方法之一。生物制氢全过程中,氢气纯化与储存也是一个很关键问题。生物法制氢气含量通常为60%-90%(体积分数),气体中可能混有CO2、O2和水蒸气等。可以采用传统化工方法来,如50%(质量分数)KOH溶液、苯三酚碱溶液和干燥器或冷却器。氢气几种储存方法(压缩、液化、金属氢化物和吸附)中,纳米材料吸附储氢是目前被认为最有前景。

2.3目前研究中存问题纵观生物技术研究各阶段,比较而言,对藻类及光合细菌研究要远多于对发酵产氢细菌研究。传统观点认为,微生物体内产氢系统(主氢化酶)很不稳定,进行细胞固定化才可能实现持续产氢。,迄今为止,生物制氢研究中大多采用纯菌种固定化技术。

,该技术中也有不可忽视不足。首先,细菌包埋技术是一种很复杂工艺,且要求有与之相适应菌种生产及菌体固定化材料加工工艺,这使制氢成本大幅度增加;第二,细胞固定化形成颗粒内部传质阻力较大,使细胞代谢产物颗粒内部积累而对生物产生反馈抑制和阻遏作用,使生物产氢能力降低;第三,包埋剂或其它基质使用,势必会占据大量有效空间,使生物反应器生物持有量受到限制,限制了产氢率和总产量提高。现有研究大多为实验室内进行小型试验,采用批式培养方法居多,利用连续流培养产氢报道较少。试验数据亦为短期试验结果,连续稳定运行期超过40天研究实例少见报道。即便是瞬时产氢率较高,长期连续运行能否获较高产氢量尚待探讨。,生物技术欲达到工业化生产水平尚需多年努力。

3、展望氢是高效、洁净、可再生二次能源,其用途越来越广泛,氢能应用将势不可当进人社会生活各个领域。氢能应用日益广泛,氢需求量日益增加,开发新制氢工艺势必行,从氢能应用长远规划来看开发生物制氢技术是历史发展必然趋势。

开发中国生物制氢技术需要做到以下政策和软件支持:

(1)励大宣传。人是生物能源生产主体和消费主体,有必要舆论宣传加强人们对生物能源认识;

(2)加大政府投资和扶持。新生物能源初始商业化阶段要进行减免税等优惠政策;

(3)借鉴国外经验。充分调动方和工业界积极性八

(4)加强高校对生物能源教育及研究。人们对生物能源认识不断加深,政府扶持力度加大和研究深人,生物制氢绿色能源生产技术将会展现出它更大开发潜力和应用价值。
本文出自:广州灵龙电子技术有限公司,制氢、氢燃料电池(www.liongon.com)

‘肆’ 怎样无碳制氢

美国宾夕法尼亚州立大学的电机工程教授格兰姆斯发现了一种低成本制氢的新方法,将水分解成氢和氧,用普通的钛和铜分别收集它们。这种方法利用太阳能的整个光谱,并且在水、太阳能和纳米二极管的帮助下得以实现。格兰姆斯和他的研究小组利用两组不同的纳米管光电化学二极管从太阳能中制得了氢。

2008年9月,美国能源部下属的爱达荷州国家实验室实现了一个重要里程碑,成功通过高温电解制氢。当这个实验室开始以5.6立方米/时的速度制氢时,标志着制氢技术取得新的进展。光解水制氢的能量可取自太阳能,这种制氢方法适用于海水和淡水,资源非常丰富,是一种相当有前途的制氢方法。

目前看来,高效率制氢的基本途径是利用太阳能。如果能用太阳能来制氢,那就等于把无穷无尽的、分散的太阳能转变成了高度集中的干净能源了,其意义十分重大。目前利用太阳能分解水制氢的方法有太阳能热分解水制氢、太阳能发电电解水制氢、阳光催化光解水制氢以及太阳能生物制氢等。太阳能制氢有重大的现实意义,虽然困难较多,但科学家们已经取得了多方面的进展。

当然,我国的科学家们也在不断地探索和研究制氢技术,并取得了很大的成效,而且我国的生物制氢技术处于国际领先地位。生物制氢思路1966年开始提出,到20世纪90年代受到空前重视。从20世纪90年代开始,德国、日本及美国等一些发达国家成立了专门机构,制订了生物制氢发展计划,以期通过对生物制氢技术的基础性和应用性研究,在21世纪中叶实现工业化生产。但目前研究进程并不理想。

我国哈尔滨工业大学突破了生物制氢技术必须采用纯菌种和固定技术的局限,开创了利用非固定化菌种生产氢气的新途径,并在2000年首次实现了中试规模连续流长期持续产氢。在此基础上,他们又先后发现了产氢能力很高的乙醇发酵类型,发明了连续流生物制氢技术反应器,初步建立了生物产氢发酵理论,提出了最佳工程控制对策。该技术和理论成果在中试研究中得到了充分验证:氢气产气率比国外同类的小试研究高几十倍;开发的工业化生物制氢系统工艺运行稳定可靠,且生产成本明显低于目前广泛采用的水电解法制氢成本。该项研究在国内外首创并实现了中试规模连续非固定化菌种长期持续生物制氢技术,是生物制氢领域的一项重大突破。

‘伍’ 为什么氢气是21世纪的新能源

在众多的新能源中,氢能将会成为21世纪最理想的能源。这是因为,在燃烧相同重量的煤、汽油和氢气的情况下,氢气产生的能量最多,而且它燃烧的产物是水,没有灰渣和废气,不会污染环境;而煤和石油燃烧生成的是二氧化碳和二氧化硫,可分别产生温室效应和酸雨。煤和石油的储量是有限的,而氢主要存于水中,燃烧后唯一的产物也是水,可源源不断地产生氢气,永远不会用完。

氢是一种无色的气体。燃烧一克氢能释放出142千焦尔的热量,是汽油发热量的3倍。氢的重量特别轻,它比汽油、天然气、煤油都轻多了,因而携带、运送方便,是航天、航空等高速飞行交通工具最合适的燃料。氢在氧气里能够燃烧,氢气火焰的温度可高达2500℃,因而人们常用氢气切割或者焊接钢铁材料。

在大自然中,氢的分布很广泛。水就是氢的大“仓库”,其中含有11%的氢。泥土里约有1.5%的氢;石油、煤炭、天然气、动植物体内等都含有氢。氢的主体是以化合物水的形式存在的,而地球表面约70%为水所覆盖,储水量很大,因此可以说,氢是“取之不尽、用之不竭”的能源。如果能用合适的方法从水中制取氢,那么氢也将是一种价格相当便宜的能源。

氢的用途很广,适用性强。它不仅能用作燃料,而且金属氢化物具有化学能、热能和机械能相互转换的功能。例如,储氢金属具有吸氢放热和吸热放氢的本领,可将热量储存起来,作为房间内取暖和空调使用。

氢作为气体燃料,首先被应用在汽车上。1976年5月,美国研制出一种以氢作燃料的汽车;后来,日本也研制成功一种以液态氢为燃料的汽车;70年代末期,前联邦德国的奔驰汽车公司已对氢气进行了试验,他们仅用了五千克氢,就使汽车行驶了110公里。

用氢作为汽车燃料,不仅干净,在低温下容易发动,而且对发动机的腐蚀作用小,可延长发动机的使用寿命。由于氢气与空气能够均匀混合,完全可省去一般汽车上所用的汽化器,从而可简化现有汽车的构造。更令人感兴趣的是,只要在汽油中加入4%的氢气。用它作为汽车发动机燃料,就可节油40%,而且无需对汽油发动机作多大的改进。

氢气在一定压力和温度下很容易变成液体,因而将它用铁罐车、公路拖车或者轮船运输都很方便。液态的氢既可用作汽车、飞机的燃料,也可用作火箭、导弹的燃料。美国飞往月球的“阿波罗”号宇宙飞船和我国发射人造卫星的长征运载火箭,都是用液态氢作燃料的。

另外,使用氢—氢燃料电池还可以把氢能直接转化成电能,使氢能的利用更为方便。目前,这种燃料电池已在宇宙飞船和潜水艇上得到使用,效果不错。当然,由于成本较高,一时还难以普遍使用。

现在世界上氢的年产量约为3600万吨,其中绝大部分是从石油、煤炭和天然气中制取的,这就得消耗本来就很紧缺的矿物燃料;另有4%的氢是用电解水的方法制取的,但消耗的电能太多,很不划算,因此,人们正在积极探索研究制氢新方法。

随着太阳能研究和利用的发展,人们已开始利用阳光分解水来制取氢气。在水中放入催化剂,在阳光照射下,催化剂便能激发光化学反应,把水分解成氢和氧。例如,二氧化钛和某些含钌的化合物,就是较适用的光水解催化剂。人们预计,一旦当更有效的催化剂问世时,水中取“火”——制氢就成为可能,到那时,人们只要在汽车、飞机等油箱中装满水,再加入光水解催化剂,那么,在阳光照射下,水便能不断地分解出氢,成为发动机的能源。

本世纪70年代,人们用半导体材料钛酸锶作光电极,金属铂作暗电极,将它们连在一起,然后放入水里,通过阳光的照射,就在铂电极上释放出氢气,而在钛酸锶电极上释放出氧气,这就是我们通常所说的光电解水制取氢气法。

科学家们还发现,一些微生物也能在阳光作用下制取氢。人们利用在光合作用下可以释放氢的微生物,通过氢化酶诱发电子,把水里的氢离子结合起来,生成氢气。前苏联的科学家们已在湖沼里发现了这样的微生物,他们把这种微生物放在适合它生存的特殊器皿里,然后将微生物产生出来的氢气收集在氢气瓶里。这种微生物含有大量的蛋白质,除了能放出氢气外,还可以用于制药和生产维生素,以及用它作牧畜和家禽的饲料。现在,人们正在设法培养能高效产氢的这类微生物,以适应开发利用新能源的需要。

引人注意的是,许多原始的低等生物在新陈代谢的过程中也可放出氢气。例如,许多细菌可在一定条件下放出氢。日本已找到一种叫做“红鞭毛杆菌”的细菌,就是个制氢的能手。在玻璃器皿内,以淀粉作原料,掺入一些其他营养素制成的培养液就可培养出这种细菌,这时,在玻璃器皿内便会产生出氢气。这种细菌制氢的效能颇高,每消耗五毫升的淀粉营养液,就可产生出25毫升的氢气。

美国宇航部门准备把一种光合细菌——红螺菌带到太空中去,用它放出的氢气作为能源供航天器使用。这种细菌的生长与繁殖很快,而且培养方法简单易行,既可在农副产品废水废渣中培养,也可以在乳制品加工厂的垃圾中培育。

对于制取氢气,有人提出了一个大胆的设想:将来建造一些为电解水制取氢气的专用核电站。譬如,建造一些人工海岛,把核电站建在这些海岛上,电解用水和冷却用水均取自海水。由于海岛远离居民区,所以既安全,又经济。制取的氢和氧,用铺设在水下的通气管道输入陆地,以便供人们随时使用。

‘陆’ 《氢能源的开发和利用》

氢能的开发和利用
当今世界上发展新能源迫在眉睫,因为能源,如石油,天然气,煤炭是不可再生资源,储量在地球上,人类的生存和时间有限,不能分开能源,有必要寻找新的能源来源。

‘柒’ 怎样有氢能源

氢能源的开发与利用
当今世界开发新能源迫在眉睫,原因是目前所用的能源如石油、天然气、煤,均属不可再生资源,地球上存量有限,而人类生存又时刻离不开能源,所以必须寻找新的能源。
氢能是一种二次能源,它是通过一定的方法利用其它能源制取的,而不像煤、石油和天然气等可以直接从地下开采、几乎完全依靠化石燃料。随着石化燃料耗量的日益增加,其储量日益减少,终有一天这些资源将要枯竭,这就迫切需要寻找一种不依赖化石燃料的储量丰富的新的含能体能源。氢正是这样一种在常规能源危机的出现和开发新的二次能源的同时,人们期待的新的二次能源。 氢位于元素周期表之首,原子序数为1,常温常压下为气态,超低温高压下为液态。作为一种理想的新的合能体能源,它具有以下特点:
l、重量最轻的元素。标准状态下,密度为 0.8999g/l,-252.7℃时,可成为液体,若将压力增大到数百个大气压,液氢可变为金属氢。
2、导热性最好的气体,比大多数气体的导热系数高出10倍。
3、自然界存在最普遍的元素。据估计它构成了宇宙质量的 75%,除空气中含有氢气外,它主要以化合物的形态贮存于水中,而水是地球上最广泛的物质。据推算,如把海水中的氢全部提取出来,它所产生的总热量比地球上所有化石燃料放出的热量还大9000倍。
4、除核燃料外氢的发热值是所有化石燃料、化工燃料和生物燃料中最高的,为142,351kJ/kg,是汽油发热值的3倍。
5、燃烧性能好,点燃快,与空气混合时有广泛的可燃范围,而且燃点高,燃烧速度快。
6、无毒,与其他燃料相比氢燃烧时最清洁滁生成水和少量氮化氢外不会产生诸如一氧化碳、二氧化碳、碳氢化合物、铅化物和粉尘颗粒等对环境有害的污染物质,少量的氮化氢经过适当处理也不会污染环境,且燃烧生成的水还可继续制氢,反复循环使用。产物水无腐蚀性,对设备无损。
7、利用形式多。既可以通过燃烧产生热能,在热力发动机中产生机械功,又可以作为能源材料用于燃料电池,或转换成固态氢用作结构材料。
8、可以以气态、液态或固态的金属氢化物出现,能适应贮运及各种应用环境的不同要求。
9、可以取消远距离高压输电,代以远近距离管道输氢,安全性相对提高,能源无效损耗减小。
10、氢取消了内燃机噪声源和能源污染隐患,利用率高。
11、氢可以减轻燃料自重,可以增加运载工具有效载荷,这样可以降低运输成本从全程效益考虑社会总效益优于其他能源。
时至今日,氢能的利用已有长足进步。自从1965年美国开始研制液氢发动机以来,相继研制成功了各种类型的喷气式和火箭式发动机。美国的航天飞机已成功使用液氢做燃料。我国长征2号、3号也使用液氢做燃料。利用液氢代替柴油,用于铁路机车或一般汽车的研制也十分活跃。氢汽车靠氢燃料、氢燃料电池运行也是沟通电力系统和氢能体系的重要手段。
目前,世界各国正在研究如何能大量而廉价的生产氢。利用太阳能来分解水是一个主要研究方向,在光的作用下将水分解成氢气和氧气,关键在于找到一种合适的催化剂。如今世界上有50多个实验室在进行研究,至今尚未有重大突破,但它蕴育着广阔的前景。
发展氢能源,将为建立一个美好、无污染的新世界迈出重要一步。
在众多的新能源中,氢能将会成为21世纪最理想的能源。这是因为,在燃烧相同重量的煤、汽油和氢气的情况下,氢气产生的能量最多,而且它燃烧的产物是水,没有灰渣和废气,不会污染环境;而煤和石油燃烧生成的是二氧化碳和二氧化硫,可分别产生温室效应和酸雨。煤和石油的储量是有限的,而氢主要存于水中,燃烧后唯一的产物也是水,可源源不断地产生氢气,永远不会用完。
氢是一种无色的气体。燃烧一克氢能释放出142千焦尔的热量,是汽油发热量的3倍。氢的重量特别轻,它比汽油、天然气、煤油都轻多了,因而携带、运送方便,是航天、航空等高速飞行交通工具最合适的燃料。氢在氧气里能够燃烧,氢气火焰的温度可高达2500℃,因而人们常用氢气切割或者焊接钢铁材料。
在大自然中,氢的分布很广泛。水就是氢的大“仓库”,其中含有11%的氢。泥土里约有1.5%的氢;石油、煤炭、天然气、动植物体内等都含有氢。氢的主体是以化合物水的形式存在的,而地球表面约70%为水所覆盖,储水量很大,因此可以说,氢是“取之不尽、用之不竭”的能源。如果能用合适的方法从水中制取氢,那么氢也将是一种价格相当便宜的能源。
氢的用途很广,适用性强。它不仅能用作燃料,而且金属氢化物具有化学能、热能和机械能相互转换的功能。例如,储氢金属具有吸氢放热和吸热放氢的本领,可将热量储存起来,作为房间内取暖和空调使用。
氢作为气体燃料,首先被应用在汽车上。1976年5月,美国研制出一种以氢作燃料的汽车;后来,日本也研制成功一种以液态氢为燃料的汽车;70年代末期,前联邦德国的奔驰汽车公司已对氢气进行了试验,他们仅用了五千克氢,就使汽车行驶了110公里。
用氢作为汽车燃料,不仅干净,在低温下容易发动,而且对发动机的腐蚀作用小,可延长发动机的使用寿命。由于氢气与空气能够均匀混合,完全可省去一般汽车上所用的汽化器,从而可简化现有汽车的构造。更令人感兴趣的是,只要在汽油中加入4%的氢气。用它作为汽车发动机燃料,就可节油40%,而且无需对汽油发动机作多大的改进。
氢气在一定压力和温度下很容易变成液体,因而将它用铁罐车、公路拖车或者轮船运输都很方便。液态的氢既可用作汽车、飞机的燃料,也可用作火箭、导弹的燃料。美国飞往月球的“阿波罗”号宇宙飞船和我国发射人造卫星的长征运载火箭,都是用液态氢作燃料的。
另外,使用氢—氢燃料电池还可以把氢能直接转化成电能,使氢能的利用更为方便。目前,这种燃料电池已在宇宙飞船和潜水艇上得到使用,效果不错。当然,由于成本较高,一时还难以普遍使用。
现在世界上氢的年产量约为3600万吨,其中绝大部分是从石油、煤炭和天然气中制取的,这就得消耗本来就很紧缺的矿物燃料;另有4%的氢是用电解水的方法制取的,但消耗的电能太多,很不划算,因此,人们正在积极探索研究制氢新方法。
随着太阳能研究和利用的发展,人们已开始利用阳光分解水来制取氢气。在水中放入催化剂,在阳光照射下,催化剂便能激发光化学反应,把水分解成氢和氧。例如,二氧化钛和某些含钌的化合物,就是较适用的光水解催化剂。人们预计,一旦当更有效的催化剂问世时,水中取“火”——制氢就成为可能,到那时,人们只要在汽车、飞机等油箱中装满水,再加入光水解催化剂,那么,在阳光照射下,水便能不断地分解出氢,成为发动机的能源。
本世纪70年代,人们用半导体材料钛酸锶作光电极,金属铂作暗电极,将它们连在一起,然后放入水里,通过阳光的照射,就在铂电极上释放出氢气,而在钛酸锶电极上释放出氧气,这就是我们通常所说的光电解水制取氢气法。
科学家们还发现,一些微生物也能在阳光作用下制取氢。人们利用在光合作用下可以释放氢的微生物,通过氢化酶诱发电子,把水里的氢离子结合起来,生成氢气。前苏联的科学家们已在湖沼里发现了这样的微生物,他们把这种微生物放在适合它生存的特殊器皿里,然后将微生物产生出来的氢气收集在氢气瓶里。这种微生物含有大量的蛋白质,除了能放出氢气外,还可以用于制药和生产维生素,以及用它作牧畜和家禽的饲料。现在,人们正在设法培养能高效产氢的这类微生物,以适应开发利用新能源的需要。
引人注意的是,许多原始的低等生物在新陈代谢的过程中也可放出氢气。例如,许多细菌可在一定条件下放出氢。日本已找到一种叫做“红鞭毛杆菌”的细菌,就是个制氢的能手。在玻璃器皿内,以淀粉作原料,掺入一些其他营养素制成的培养液就可培养出这种细菌,这时,在玻璃器皿内便会产生出氢气。这种细菌制氢的效能颇高,每消耗五毫升的淀粉营养液,就可产生出25毫升的氢气。
美国宇航部门准备把一种光合细菌——红螺菌带到太空中去,用它放出的氢气作为能源供航天器使用。这种细菌的生长与繁殖很快,而且培养方法简单易行,既可在农副产品废水废渣中培养,也可以在乳制品加工厂的垃圾中培育。
对于制取氢气,有人提出了一个大胆的设想:将来建造一些为电解水制取氢气的专用核电站。譬如,建造一些人工海岛,把核电站建在这些海岛上,电解用水和冷却用水均取自海水。由于海岛远离居民区,所以既安全,又经济。制取的氢和氧,用铺设在水下的通气管道输入陆地,以便供人们随时使用。

‘捌’ 急!~~~~~~!!在线等

1)氢气制备。可以用电解法、热化学法、光电化学法或等离子体化学法制
氢。

2)氢的储存。氢的储存可以用压缩、低温液化和贮氢金属吸存。

3)氢的利用。可作燃料,用于导航、机动车等;可用氢燃料电池通过电化
学反应直接转换成电能;可用作各种能源的转换介质或中间载体。
国际能源巨头早在上个世纪末就已经未雨绸缪,开始了对于氢能的研发和应用探索,BP和壳牌在氢能的开发应用上处于领先地位。

BP:更看重氢气发电

BP在去年年底成立了新的替代能源业务部门,并决定增加一倍的投资,以大力发展包括氢在内的可再生能源的开发和利用。

在氢燃料电池领域,BP是全球氢燃料示范项目的主要参与者。目前,BP已经在新加坡开设了两个加氢站。除此之外,设在德国慕尼黑机场的氢燃料站从1998年至今已经成功运营了8年时间。

2004年4月27日,作为美国能源部氢能源计划的一部分,BP与福特汽车公司达成协议,计划由福特汽车在美国萨克拉曼多、奥兰多和底特律的主要城市安置30辆氢动力车辆。

BP还参与到中国科技部的氢燃料汽车示范项目中,为科技部在北京的3辆燃料电池公共汽车示范项目设计、建造、运营加氢站设施。

然而,与燃料电池相比,BP更为看重利用氢气发电的业务,氢气发电业务也被直接划归了新成立的替代能源业务部门下,体现了公司的重视。

壳牌:运作全球最大的氢燃料公共运输项目

与BP相比,壳牌关于氢能的应用主要还是集中在燃料电池上。自1998年以来,壳牌在开发替代能源技术方面的投资已经超过了10亿美元,并且成立了专门的氢能业务部。壳牌参与到了欧盟氢燃料电池技术平台的搭建和日本氢燃料电池示范项目的运营中,并已经公开宣称,今年在美国至少要开始运营2座以上新的加氢站。

与BP一样,壳牌也参与了中国科技部的燃料电池公共汽车示范项目,将在上海国际汽车城建设上海首座固定加氢站。

迄今为止,壳牌在燃料电池公共汽车方面的最大项目诞生在今年6月29日。当天,壳牌氢能公司与Connexxion巴士公司和MAN轻卡巴士公司在荷兰鹿特丹签署备忘录,宣布创建世界最大的氢燃料公共运输业务项目。
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
就目前而言,氢能作为“二次能源”,国际上的氢能制备来自于矿石燃料、生物质和水,工艺主要有电解制氢、热解制氢、光化制氢、放射能水解制氢、等离子电化学法制氢和生物制氢等。在这些方法中,除了生物制氢技术外。其它方法都是通过自然界中已经存在的碳氢化合物——天然气、煤、石油等一次能源中提取出来的,这种方法制取所得的氢,已经成为了二次能源,它不仅消耗掉了相当大的能量,而且所得效率相当低;并且在其制取过程还对环境产生了污染。

电解水制氢技术是目前应用较广且比较成熟的方法之一。以水为原料制氢过程是氢与氧燃烧生成水的逆过程,因此只要提供一定形式一定的能量,则可使水分解成氢气和氧气。提供电能使水分解制得的氢气的效率一般在75%-85%。其中工艺过程比较简单,也不会产生污染,但消耗电量大,因此其应用受到一定的限制。目前电解水的工艺、设备均在不断的改进,但电解水制氢能耗仍然很高。

烃类水蒸汽重整制氢。烃类水蒸汽重整制氢反应是强吸热反应,反应时需外部供热。热效率较低,反应温度较高,反应过程中水大量过量,能耗较高,造成资源的浪费。

重油氧化制氢重整方法,反应温度较高,制得的氢纯度低,也不利于能源的综合利用。

因此,用这些方式来制取氢,不仅要付出很高的制造成本,还要付出环境代价,而利用效率却相当低。假如用这种形式来满足我们对能量的需求,而仅仅为了达到在对能源的末端消费中避免污染,则无疑是舍近求远,得不偿失,是绝对不可取的,还不如直接利用这些化石能源的好。

国外制氢技术

为了寻求经济实用的制氢方法,各国科学家正在努力探索。近年来已经取得了一些进展。如:

1、用氧化亚铜做催化剂从水中制氢气。

2、用新型的钼的化合物从水中制氢气。

3、用光催化剂反应和超声波照射把水完全分解的方法。

4、陶瓷跟水反应制取氢气。

5、甲烷制氢气。

6、从微生物中提取的酶制氢气。

7、从细菌制取氢气。

8、用绿藻生产氢气。

(1).用氧化亚铜做催化剂从水中制氢气

有研究人员将0.5克氧化亚铜粉末添加入200立方厘米的蒸馏水中,然后用一盏玻璃灯泡中发出的460纳米~650纳米的可见光进行照射,在氧化亚铜催化剂的作用下,水分解成氢和氧。用这种方法共进行了30次实验,从分解的水中得到了不同比例的氢和氧。试验中发现,如果得到的氧的压力增加到500帕斯卡,水的分解过程就减慢。氧化亚铜粉末的使用寿命可达1 900小时之久。东京技术研究所计划进一步研究如何提高氢的产生效率,同时研制能够在波长更长的可见光照射下发挥活性的催化剂,该研究所正在试验一种新的含铜铁合金的氧化物。

(2)、用新型的钼的化合物从水中制氢

西班牙瓦伦西亚大学的两位科学家发明了一种低成本的从水中制取氢的方法。他们对催化转化器进行改造,使水分解时仅需很少的成本。他们用一种从钼中获取的化学产品做催化剂,而不使用电能。他们说,如果用氢作原料,从半升水中制得的氢足以使一辆小汽车行驶633公里。

(3)、用光催化剂反应和超声波照射把水完全分解法制氢

有人发现二氧化钛经光(紫外线)照射可分解水的现象。他们本拟应用这一方法制氢,但由于氢和氧的生成量较少,在经济上不合算而中断了这一研究。据最近报道,当同时使用光催化剂反应和超声波照射的方法能够把水完全分解。这种“超声波光催化剂反应”所以能使水完全分解,是由于在超声波的作用下,水可被分解为氢和双氧水,而双氧水经光催化反应又可分解成氧和氢。不过超声波照射和二氧化钛光催化剂虽然获得了完全分解水的结果,但氢的生成量却较少。在添加二氧化锰后,再用超声波照射,二氧化锰分解后的锰离子可溶解到溶液中,使双氧水产生大量的氢。

(4)、陶瓷跟水反应制氢

有人在300 ℃下,使陶瓷跟水反应制得了氢。他们在氩和氮的气流中,将炭的镍铁氧体(CNF)加热到300℃,然后用注射针头向CNF上注水,使水跟热的CNF接触,就制得氢。由于在水分解后CNF又回到了非活性状态,因而铁氧体能反复使用。在每一次反应中,平均每克CNF能产生2立方厘米~3立方厘米的氢气。

(5)、甲烷制氢气

1.用镍铂稀土元素氧化物制氢

有人用镍铂稀土元素氧化物多孔催化剂,使甲烷、二氧化碳和水生成了氢气。催化剂中镍、稀土元素氧化物和铂的组成比例为10:65:0.5。其制备过程是,先将镍、稀土元素氧化物等原料加热熔解,然后导入氨气,使熔解物成为凝胶状,再进行干燥、热处理。这种催化剂微粒孔径为2纳米~100纳米,具有很高的催化活性。乾智行教授将该催化剂装进反应塔,然后加入二氧化碳、甲烷和水蒸气。结果,在常压及550 ℃~600 ℃条件下,生成物为氢气和一氧化碳,升温至650 ℃,其转化率为80%;温度为700 ℃时,转化率几乎达到100%。

2.用C60作催化剂从甲烷制氢

有人用C60作催化剂,从甲烷制得氢气。在现阶段,C60在高温条件下才能发挥功能,不能立刻达到实用,必须加以改良,制成在低温条件下也能工作的节能催化剂。他们开发的催化剂,是在碳粉里掺10%的C60。在加热到1 000 ℃的容器里,放入0.1克催化剂,以1<SPAN style="FONT-SIZE: 12pt; FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times
1231456

作为人类长远的战略能源,氢可与其他一次能源结合发展各种氢能系统,特
别是太阳能-氢能综合能源系统有很好发展前途。国际上认为氢能将是21世纪
中后期最理想的能源。
国际能源巨头早在上个世纪末就已经未雨绸缪,开始了对于氢能的研发和应用探索,BP和壳牌在氢能的开发应用上处于领先地位。

BP:更看重氢气发电

BP在去年年底成立了新的替代能源业务部门,并决定增加一倍的投资,以大力发展包括氢在内的可再生能源的开发和利用。

在氢燃料电池领域,BP是全球氢燃料示范项目的主要参与者。目前,BP已经在新加坡开设了两个加氢站。除此之外,设在德国慕尼黑机场的氢燃料站从1998年至今已经成功运营了8年时间。

2004年4月27日,作为美国能源部氢能源计划的一部分,BP与福特汽车公司达成协议,计划由福特汽车在美国萨克拉曼多、奥兰多和底特律的主要城市安置30辆氢动力车辆。

BP还参与到中国科技部的氢燃料汽车示范项目中,为科技部在北京的3辆燃料电池公共汽车示范项目设计、建造、运营加氢站设施。

然而,与燃料电池相比,BP更为看重利用氢气发电的业务,氢气发电业务也被直接划归了新成立的替代能源业务部门下,体现了公司的重视。

壳牌:运作全球最大的氢燃料公共运输项目

与BP相比,壳牌关于氢能的应用主要还是集中在燃料电池上。自1998年以来,壳牌在开发替代能源技术方面的投资已经超过了10亿美元,并且成立了专门的氢能业务部。壳牌参与到了欧盟氢燃料电池技术平台的搭建和日本氢燃料电池示范项目的运营中,并已经公开宣称,今年在美国至少要开始运营2座以上新的加氢站。

与BP一样,壳牌也参与了中国科技部的燃料电池公共汽车示范项目,将在上海国际汽车城建设上海首座固定加氢站。

迄今为止,壳牌在燃料电池公共汽车方面的最大项目诞生在今年6月29日。当天,壳牌氢能公司与Connexxion巴士公司和MAN轻卡巴士公司在荷兰鹿特丹签署备忘录,宣布创建世界最大的氢燃料公共运输业务项目。
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
就目前而言,氢能作为“二次能源”,国际上的氢能制备来自于矿石燃料、生物质和水,工艺主要有电解制氢、热解制氢、光化制氢、放射能水解制氢、等离子电化学法制氢和生物制氢等。在这些方法中,除了生物制氢技术外。其它方法都是通过自然界中已经存在的碳氢化合物——天然气、煤、石油等一次能源中提取出来的,这种方法制取所得的氢,已经成为了二次能源,它不仅消耗掉了相当大的能量,而且所得效率相当低;并且在其制取过程还对环境产生了污染。

电解水制氢技术是目前应用较广且比较成熟的方法之一。以水为原料制氢过程是氢与氧燃烧生成水的逆过程,因此只要提供一定形式一定的能量,则可使水分解成氢气和氧气。提供电能使水分解制得的氢气的效率一般在75%-85%。其中工艺过程比较简单,也不会产生污染,但消耗电量大,因此其应用受到一定的限制。目前电解水的工艺、设备均在不断的改进,但电解水制氢能耗仍然很高。

烃类水蒸汽重整制氢。烃类水蒸汽重整制氢反应是强吸热反应,反应时需外部供热。热效率较低,反应温度较高,反应过程中水大量过量,能耗较高,造成资源的浪费。

重油氧化制氢重整方法,反应温度较高,制得的氢纯度低,也不利于能源的综合利用。

因此,用这些方式来制取氢,不仅要付出很高的制造成本,还要付出环境代价,而利用效率却相当低。假如用这种形式来满足我们对能量的需求,而仅仅为了达到在对能源的末端消费中避免污染,则无疑是舍近求远,得不偿失,是绝对不可取的,还不如直接利用这些化石能源的好。

国外制氢技术

为了寻求经济实用的制氢方法,各国科学家正在努力探索。近年来已经取得了一些进展。如:

1、用氧化亚铜做催化剂从水中制氢气。

2、用新型的钼的化合物从水中制氢气。

3、用光催化剂反应和超声波照射把水完全分解的方法。

4、陶瓷跟水反应制取氢气。

5、甲烷制氢气。

6、从微生物中提取的酶制氢气。

7、从细菌制取氢气。

8、用绿藻生产氢气。

(1).用氧化亚铜做催化剂从水中制氢气

有研究人员将0.5克氧化亚铜粉末添加入200立方厘米的蒸馏水中,然后用一盏玻璃灯泡中发出的460纳米~650纳米的可见光进行照射,在氧化亚铜催化剂的作用下,水分解成氢和氧。用这种方法共进行了30次实验,从分解的水中得到了不同比例的氢和氧。试验中发现,如果得到的氧的压力增加到500帕斯卡,水的分解过程就减慢。氧化亚铜粉末的使用寿命可达1 900小时之久。东京技术研究所计划进一步研究如何提高氢的产生效率,同时研制能够在波长更长的可见光照射下发挥活性的催化剂,该研究所正在试验一种新的含铜铁合金的氧化物。

(2)、用新型的钼的化合物从水中制氢

西班牙瓦伦西亚大学的两位科学家发明了一种低成本的从水中制取氢的方法。他们对催化转化器进行改造,使水分解时仅需很少的成本。他们用一种从钼中获取的化学产品做催化剂,而不使用电能。他们说,如果用氢作原料,从半升水中制得的氢足以使一辆小汽车行驶633公里。

(3)、用光催化剂反应和超声波照射把水完全分解法制氢

有人发现二氧化钛经光(紫外线)照射可分解水的现象。他们本拟应用这一方法制氢,但由于氢和氧的生成量较少,在经济上不合算而中断了这一研究。据最近报道,当同时使用光催化剂反应和超声波照射的方法能够把水完全分解。这种“超声波光催化剂反应”所以能使水完全分解,是由于在超声波的作用下,水可被分解为氢和双氧水,而双氧水经光催化反应又可分解成氧和氢。不过超声波照射和二氧化钛光催化剂虽然获得了完全分解水的结果,但氢的生成量却较少。在添加二氧化锰后,再用超声波照射,二氧化锰分解后的锰离子可溶解到溶液中,使双氧水产生大量的氢。

(4)、陶瓷跟水反应制氢

有人在300 ℃下,使陶瓷跟水反应制得了氢。他们在氩和氮的气流中,将炭的镍铁氧体(CNF)加热到300℃,然后用注射针头向CNF上注水,使水跟热的CNF接触,就制得氢。由于在水分解后CNF又回到了非活性状态,因而铁氧体能反复使用。在每一次反应中,平均每克CNF能产生2立方厘米~3立方厘米的氢气。

(5)、甲烷制氢气

1.用镍铂稀土元素氧化物制氢

有人用镍铂稀土元素氧化物多孔催化剂,使甲烷、二氧化碳和水生成了氢气。催化剂中镍、稀土元素氧化物和铂的组成比例为10:65:0.5。其制备过程是,先将镍、稀土元素氧化物等原料加热熔解,然后导入氨气,使熔解物成为凝胶状,再进行干燥、热处理。这种催化剂微粒孔径为2纳米~100纳米,具有很高的催化活性。乾智行教授将该催化剂装进反应塔,然后加入二氧化碳、甲烷和水蒸气。结果,在常压及550 ℃~600 ℃条件下,生成物为氢气和一氧化碳,升温至650 ℃,其转化率为80%;温度为700 ℃时,转化率几乎达到100%。

2.用C60作催化剂从甲烷制氢

有人用C60作催化剂,从甲烷制得氢气。在现阶段,C60在高温条件下才能发挥功能,不能立刻达到实用,必须加以改良,制成在低温条件下也能工作的节能催化剂。他们开发的催化剂,是在碳粉里掺10%的C60。在加热到1 000 ℃的容器里,放入0.1克催化剂,以1<SPAN style="FONT-SIZE: 12pt; FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times

‘玖’ 氢气是怎么制成的

1.在一个直径7.5厘米的玻璃杯中加入三分之四的水。
2.在水中加入一勺盐。盐可以帮助导电(尽管由于加入氯化物电解过程中会产生氯气,但是只要电流不是很大,那么杂质气体的量也不会很多)。
3.用一个纸板盖住玻璃杯。然后在纸板上间隔5厘米左右的分别插入两根30到60厘米长的电线,并且让电线的5到7厘米长的部分没入水中。
4.将电线的另一端和9伏电源的正负两极分别相连。很快你就会看到在水中的电线附近会有气泡产生,氢气在负极产生,氧气在正极产生。
5.如果想要制备大量的氢气或氧气,那么你可以视情况进行下面的步骤,否则只到第5步就可以了。你需要准备一个小容器(注射器最好)以及可以把容器倒置固定的东西(通常用胶带)。
6.把小容器沉没到玻璃杯中。不要把小杯子从水里拿出或者让小杯子的口朝上,而是让小容器倒置,使小容器的口和大杯的底部接触 (如果使用注射器的话,那么只需要把注射器前端小口插入水中,然后拉出芯杆,吸满水即可,之后直接跳到第9步)。
7.慢慢把小杯子向上拉,但不要离开水面。最后的效果是,小杯子突出在水面上,并且里面装满了水(压力的作用使得水留在了小杯子里面)。
8.用胶带、钳子等固定住小杯子。
9.把电线的正负极插入进小容器中。
10.当小容器里充满气体之后,就可以移开了。在玻璃制造的高温加工过程及电子微芯片的制造中,在氮气保护气中加入氢以去除残余的氧。
4、用作合成氨、合成甲醇、合成盐酸的原料,冶金用还原剂。
5、由于氢的高燃料性,航天工业使用液氢作为燃料。仅供参考哦

‘拾’ 工业上制取氢气

⒈ 工业氢气生产方法:
⑴由煤和水生产氢气(生产设备煤气发生设备,变压吸附设备)
⑵有裂化石油气生产(生产设备裂化设备,变压吸附设备,脱碳设备)
⑶电解水生产(生产设备电解槽设备)
⑷工业废气。
⒉民用氢气生产方法:
⑴氨分解(生产设备汽化炉,分解炉,变压吸附设备)
⑵由活拨金属与酸(生产设备不锈钢或玻璃容器设备)
⑵强碱与铝或硅(生产设备充氢气球机设备)一般生产氢气球都用此方法。
⒊试验室氢气生产方法:
盐酸与锌粒(生产设备启普发生器)

阅读全文

与德国如何提高氢气生产能力相关的资料

热点内容
金华义乌国际商贸城雨伞在哪个区 浏览:775
俄罗斯如何打通飞地立陶宛 浏览:1149
韩国如何应对流感 浏览:934
在德国爱他美白金版卖多少钱 浏览:972
澳大利亚养羊业为什么发达 浏览:1412
如何进入法国高等学府 浏览:1488
巴西龟喂火腿吃什么 浏览:1419
巴西土地面积多少万平方千米 浏览:1279
巴西龟中耳炎初期要用什么药 浏览:1243
国际为什么锌片如此短缺 浏览:1647
巴西是用什么规格的电源 浏览:1470
在中国卖的法国名牌有什么 浏览:1371
在菲律宾投资可用什么样的居留条件 浏览:1282
德国被分裂为哪些国家 浏览:892
澳大利亚跟团签证要什么材料 浏览:1225
德国大鹅节多少钱 浏览:887
去菲律宾过关时会盘问什么 浏览:1211
澳大利亚女王为什么是元首 浏览:1041
有什么免费的韩国小说软件 浏览:770
申请德国学校如何找中介 浏览:677