Ⅰ 管道焊接施工方法
管道焊接冬季施工方案
本工程施工期跨入冬季,因此制定有效的防雪、防风、防寒措施,做好冬期施工是按期高质量完成工程施工的保证。冬期施工根据施工规范的要求,要采取特殊措施,以保证施工质量。
2.1 冬期施工的确定
安装工程:当环境温度低于0℃时,即转入冬期施工;
混凝土、钢筋混凝土工程和砖石工程:当室外平均温度持续5天稳定低于5℃时,即转入冬期施工;
2.2管理措施
冬季施工,必须克服寒冷天气对工程质量和安全生产的影响,关键要做好施工前的准备工作和施工中的检查工作,每项工程施工前,技术人员要结合具体气象条件及工程任务特点,详细地做好对施工人员的技术交底,保证每个施工人员了解每一步施工要求,并监督施工人员按施工方案的要求执行。
在整个冬期施工中,施工现场设专人测温、气象记录、覆盖,技术人员和QA/QC工程师在每天下午下班前检查各施工项目的保温、覆盖情况。
施工计划安排必须考虑冬季气候条件及特点,在总进度许可的条件下,对不适宜冬季施工的工程应延缓至明春施工,尽量避开冬季施工。有关人员每天收听天气预报,根据天气情况安排施工生产。
入冬之前应对生产、生活设施组织全面安全、质量检查,及时解决检查中发现的问题。
冬季施工过程中除执行本措施要求外,还应执行有关设计要求、规范、具体施工方案等技术文件要求。
2.3技术措施
2.3.1 土建工程
★ 土方工程
冬期开挖的土方工程宜采用防止冻结法开挖土方,开挖时,可在冻结前草袋覆盖或将表层土翻耕耙松,其深度一般不少于0.3;已上冻的土方开挖,采用化土法进行开挖,即搭设暖棚,通入暖气将棚内土方融化后进行开挖。
土方回填应选用不含冻土块的好土或砂砾,每层回填的虚铺厚度应根据所用施工机械选择,并要求比常温施工时减少20%~25%。回填工作应连续进行,防止基土或已填土受冻;
在冬期挖土中,将不冻土堆在一起加以覆盖,防止冻结,留作回填时用;
灰土施工要特别注意检查,不允许使用冻土拌灰土,夯实后的灰土面层和拌好的灰土当天用不完,应采取保温措施。
★ 钢筋工程
钢筋宜在室内加工、焊接,加工成成品或半成品运至现场绑扎。钢筋的焊接必须在室外进行时,其最低气温不宜低于-20℃,并有防雪挡风措施,其环境温度低于-10℃时,钢筋应预热。焊后的接头,严禁立即碰到冰雪。
★ 混凝土工程
配制混凝土,应优先采用硅酸盐水泥或普通硅酸盐水泥,最小水泥用量不少于300千克/立方米。
为保证浇筑的混凝土在受冻前,其抗压强度不低于设计标号的30%,施工中可采取热拌混凝土、加热养护、或在混凝土拌合物中掺加外加剂等措施,并对原材料的加热、搅拌、运输和养护等进行热工计算,以指导施工。
采用加热水拌制混凝土时,水与骨料的加热温度应根据热工计算确定,水泥不能直接加热,使用前宜先入暖棚内存放。
当骨料不加热时,水可加热到100℃,但水泥不与80℃以上的水直接接触,先投骨料和已加热的水,再投入水泥。
在搅拌混凝土时,加入一定量的外加剂,可以加速混凝土的硬化,以提早达到临界强度或降低水的冰点,使混凝土在负温下不致冻结。优先采用具有减水、早强、降低水的冰点等作用的复合型早强剂,具体施工时根据设计要求或与设计人员协商确定。混凝土和钢筋混凝土设备基础、塔基础框架、室外构架基础等混凝土中不得掺加氯盐抗冻剂。
进行浇筑及养护施工时,利用施工时搭设的脚手架搭设暖棚,并在暖棚中通入暖气进行浇筑及养护。供暖应采用集中供暖来进行,防止供暖量不足影响施工质量。
2.3.2 安装工程
★设备平台梯子、管道、钢结构焊接
设备平台、梯子及其附件按施工图纸在预制场内分段预制,在采取有效的加固措施后对组对焊缝全部焊接,以减少室外高空焊接量。
钢结构在预制场组对成片,分片就位后将联系梁临时点焊,然后用帆布在钢结构四周进行围护以防风、防雨、防雪,围护后再焊接钢结构节点焊缝。
当环境温度低于5℃时,焊接前用氧-乙炔焰对焊缝坡口两侧100mmm范围内进行加热烘干,驱除坡口内的露水潮气,火焰采用中性焰。
当环境温度低于0℃时,除奥氏体不锈钢外,无预热要求的钢种,在始焊处100mm范围内,预热到15℃以上。
焊接须连续进行,中断焊接时,要采取保温措施,立即用石棉布或岩棉被将焊口包裹,重新焊接时再对焊口进行预热,焊接过程中层间温度不低于预热温度,焊接完毕对焊口进行保温缓冷。
当焊接环境温度低于下列要求时,必须采取提高焊接环境温度的措施:
①普通碳素钢焊接,不低于-200C;
②低合金钢焊接,不低于-100C;
③奥氏体不锈钢焊接,不低于-50C:
④屈服点大于390MPa的低合金钢焊接,不低于00C。
提高焊接环境温度的措施采取液化石油气火焰加热的方案,在低温环境焊接的碳素钢、合金钢焊接前的预热温度按下表预热温度的上限执行。
钢种 钢板厚度或壁厚(mm) 焊接环境气温(0C) 预热温度0C
普通碳素钢 20≤δ≤30
30<δ≤38 -20~0
-20~0 50~100
75~125
低合金钢 屈服点
σs<390MPa 25<δ≤32
32<δ≤38 -10~0
-10~0 75~125
100~150
390≤σs<440 MPa 20<δ≤25
25<δ≤32
32<δ≤38 0~常温 75~125
100~150
125~175
440≤σs<490 MPa δ≤20
20<δ≤25
25<δ≤32
32<δ≤38 0~常温 75~125
100~150
125~175
150~200
★ 设备及管道安装:
彻底清尽现场各种基础预留孔内的存水或污物,并用干砂临时充填。
施工过程中,预制管段的两端及设备,管道放空口等敞口部分应及时封口,防止进水、进雪冻结。
设备的二次灌浆时,当温度低于5℃时,二次灌浆层应进行养护,采取保温和防冻措施。
机泵解体后,应及时将零部件回装,如不能回装时,零部件下面应设置垫层,并用保温材料盖好,防止雾雪侵蚀。
高强螺栓在负温下拧紧时,不得使用冲击力。
★ 吊装作业
进行吊装作业时,对吊车站位的地面情况认真检查确认,严禁吊车腿搭在冻土层上作业,起吊前检查被吊物是否与地面冻结,如冻结,必须进行适当处理,严禁强拉、硬吊,以免造成设备和机具的损坏。
捆扎用的索具和被吊物之间应有防滑措施,如垫上木板或橡胶板,严禁滑脱。
★ 电气工程
电缆铺设时,如环境温度低于如下数值,须预先加热电缆:
油浸绝缘电缆、塑料绝缘电缆 0℃
橡皮绝缘护套钢带铠装电缆 -7℃
橡皮绝缘氯乙烯护套电缆 -15℃
橡皮绝缘裸铝套电缆 -20℃
聚氯乙烯绝缘、聚氯乙烯套电缆 -20℃
电缆的室内升温法可采用将电缆在预制厂房内放置三昼夜,厂房室内温度不得低于10℃,若在40℃-50℃热风条件下则需放置24h。
当采用电热法加热电缆时,所通过电流不得超过额定电流,电缆的表面温度应预控制,其中3kv以下电缆不得超过40℃,6kv-10kv的电缆不得35℃,20kv-30kv的电缆不得25℃,烘热后电缆应尽快铺设,铺设时间不得超过1h。
电缆头的制作:当环境温度低于0℃时,应用电炉烘烤提高电缆头移动和切割部位的温度到5℃以上,防止弯曲时绝缘层受伤和破坏,电缆头的密封应用耐寒性能较好的电缆胶进行浇注。
变压器抽芯时应在室温高于5℃的室内进行,变压器本身温度应高于室温。
电缆在0℃以下不准进行耐压试验。
电气工程在施工中的焊接工作应参照安装工程中焊接要求执行。
★ 仪表工程
试验用标准表及工程用仪表,要存放在现场仪表库房内,不得放置于温度低于10℃以下环境中。
仪表调校过程中,室温不得低于10℃。
聚氯乙烯及橡胶控制电缆不允许在-5℃以下环境中进行铺设。
穿线管口需封住,防止进水。
控制室仪表盘、柜安装后需保证室内温度在15℃-35℃,湿度不得高于80%。厂房外的聚氯乙烯及橡胶控制电缆、管缆不允许在低于-5℃的气温下敷设。
在仪表调校过程中,室温不得低于10℃。
如仪表、导压管等必须在冬期进行水压试验时,试压后将水放尽,并用空气吹干。
为了防止在工艺管道进行水压试验时,试压水进入仪表及仪表管线,应在上冻前对已安装的仪表进行一次全面性检查,检查一次阀、二次阀及排污阀是否打开,积水应吹除干净,检查人员要做好记录,并承担责任。
★ 其它措施
施工现场临时上下水管道,在入冬前应进行全面检查,必须做好保温防冻防凝工作。埋地给排水管道必须在冻土层以下。供暖前,检查供暖管道是否通畅,保温是否完整。
切实做好现场施工机具的冬期维护工作。现场用的汽车、吊车、空压车、试压泵等,在停止工作后均应将水放净。机动车厢水箱中添加抗冻剂时应经抗冻试验确认。
低温环境工作机械,应认真检查零部件。要选用适合于环境温度的润滑油(脂)。卷扬机离合器刹车带等磨擦面不得积聚冰、雪、霜。
施工用钢丝绳、电焊软线、气压表、氧气带、乙炔气带等,收工后要妥善处理,以免冷脆断裂、老化。
为施工生产及采暖设置的火炉须有专人负责。做到通风良好、人离电断、确保安全。
不得在施工现场用明火取暖。
施工用电应有良好的接地、接零保护以及安装漏电保护器,现场临时用电电缆宜架空敷设,禁止电缆雪水中浸泡。开关箱应防雨雪。
★ 冬期安全施工措施
进入施工现场必须戴安全帽,高空作业必须系安全带,有条件的高空作业应设安全网;
脚手架跳板,雪后使用时要翻一个面,并将两端绑扎牢固后再使用;
高空平台是钢板的可用铺炉灰、砂子的方法进行防滑;
运输大型机具、设备、预制构件时,为防止行车途中路滑翻车,必须封车牢固,由专人随车监护,坚持出车前、行车中、收车后检查,发现问题及时排除。
做好冬期防火准备,冬季大庆气候干燥,易发生大火,对现场搭设的临时房、棚要加强防火工作,配备消防器材,并有专人负责冬季消防工作;
对设备、泵体内残留有水,但一时无法排尽的,要及时采取防冻措施,防止设备损坏;对怕冻的器材、设备要采取防冻措施 ,提前进行保温。
冰雪天禁止穿塑料鞋到施工现场,严禁在独木、型钢、管线等物体上行走,不允许在3米以上无防护栏处施工。
管道焊接时,应保证焊接区不受恶劣天气影响。当环境温度较低时应采取适当措施(如预热、暖棚、加热),保证焊接所需的足够温度。焊条应烘干后放入保温桶内。在室外焊接时,如风力大于4级应设防风屏障,雨、雪天应设挡雨棚。
Ⅱ PE管如何焊接
PE管是用热熔机焊接的,大口径PE
管以对接方式焊接的,小口径的用承插方式连接的。
Ⅲ 水管怎么焊接
焊接管道的方法如下:
1、气焊。可采用气焊的方式来焊接,它是将可燃气体和助燃气体混合在一起,用它来作为火焰的热源,然后再将管道给熔化焊接在一起。
2、电弧焊。也可采用电弧焊的方式,就是用电弧来作为焊接的热源,将管道连接在一起。这种焊接方式,常被用于工业生产中。
焊接管道除了以上两种方式,还可以用接触焊,而具体采用哪种方式来焊接,还需根据管道的材质以及要求来。
Ⅳ PP管材如何焊接,和PPR焊接有啥不同啊
PP管材焊接要根据管件来决定。PP管件是热熔承插的,就用热熔器焊接,是热熔对焊的就要用热熔对焊机焊接。如果PP管件是承插的,就可以用塑料焊枪来焊接。
焊接方式不同:
1、PPR焊接:焊接时通过加热或加压或两者并用,并且用或不用填充材料,使工件通过达到原子间或分子间结合力而形成永久性连接的工艺过程。
2、PP焊接:是利用放热熔剂化学反应作为热源,预先把待焊两工件的端头固定在铸型内产生高温使得工件连接的方式。
焊接物品不同:
3、可以看出,焊接和热熔均属于焊接,而焊接一般需要填充材料,热熔不需要填充材料。PP管道主要使用热熔,金属管道主要使用焊接。
pp管和ppr管焊接方法:
4、用PPR和pp管专用热熔器,根据管径大小使用相应的热件,粘接的两端要同时加热,一边加热一边往加热器中间靠,当靠到根时停2秒钟,拔出对接即可。时间短了和长了都容易粘接不严而漏水。
5、管子的截断应使用专用管剪,将管子剪断。管材截取后,必须清除毛边毛刺,管材、管件连接面必须清洁、干燥、无油。
6、热熔机热熔连接时应先通电加热达到工作温度,指示灯亮后,方可开始热熔操作。
7、熔接弯头或三通等有安装方向的管件时,应按图纸要求注意其方向,提前在管件上做好标识,保证安装角度正确,加热后,应将管段插入到所标识的深度,调正、调直时,不应使管材和管件旋转,保持管材与轴线垂直,使其处于同一轴线上。
(4)德国是怎么焊接管子的扩展阅读:
三型聚丙烯(PP—R)
1、性质及生产工艺:PP—R无毒、卫生、可回收利用。 PP—R的维卡软化温度为131℃,最高使用温度为95℃,长期使用温度为70℃,属耐热、保温节能产品。其密度900千克/立方米。PP—R管道采用挤压成型工艺生产, PP—R管件采用注塑成型工艺生产。
2、生产标准目:前国内尚未制订统一的国家管材标准。PP—R生产线多从德国引进, PP—C生产线多从韩国引进。生产厂家多是参照德国标准制订自己的企业标准。
3、连接方式与配件:PP—R管材及配件之间采用热熔连接。 PP—R与金属管件连接时,采用带金属嵌件的聚丙烯管件作为过渡,该管件与 PP—R采用热熔连接,与金属管采用丝扣连接。
PP管连接方式:
4、将管子或配管零件之接合端部份以砂纸磨掉表面层,如表面尚有油脂,应用氯乙烯或丙酮拭净;将两端入电焊套,两端必需插达电焊套之中间点,插入时两端点不得有水。
5、然后插入焊接控制器之二次线,开始焊接.过程中不得移动或碰触及中途切断电源或使二次线接合点松脱.焊接完成一小时后俟接合点完全冷却才可以加压于管内及由外扳动管子,以确保接合点不变形。
6、直管必须先使用切管器切割,务必使承口十分平整,承口端插入电焊套部分不得有1mm以上刮痕或变形.使用过之电焊套不得再次使用,如电焊套有破损或变形,应予弃置不得使用.如接失败,应更换新的电焊套重新焊接。
7、若因电焊套进行中因电源切断而失败,待完全冷却后再插上二次线重新进行焊接.如焊接完成后需立即加应力于管上,可以浇冷水使其冷却。
8、端缘焊接法,在无法使用电焊套接合之特殊情况下,得采用端缘焊接法.焊接前必先使用切管器将承口切得十分平整.然后以端缘焊接器焊接,其焊接方法及加热时间必需完全按照各型焊接器之指示及加热时间表为之。
注意:焊接完成后,俟接合部分冷却,必须将接合缝之管子内部削平,否则日后杂物会再接缝处累积造成堵塞。
Ⅳ 管道的焊接方法有哪些
管道自动焊机目前,管道焊接常用的方法有焊条电弧焊(SMAW)、埋弧焊(SAW)、钨极气体保护焊( GTAW)、熔化极气体保护焊(GMAW)、药芯焊丝电弧焊(FCAW)和下向焊等几种。
(1)焊条电弧焊的优点是设备简单、轻便、操作灵活,可以适用于维修及装配中的短缝的焊接,特别是可以适用干难以达到的部位的焊接。缺点就是对焊工操作技术要求高,焊工培训费用大,劳动条件差,生产效率低,不适于特殊金属及薄板的焊接。,管道坡口机。
(2)埋弧焊可以采用较大的电流,在电弧热的作用下,一部分焊剂熔化成熔渣并与液态金属发生液态冶金反应。另一部分熔渣浮在金属熔池的表面,一方面可以保护焊缝金属,防止空气的污染,并与熔化金属产生物理化学反应,改善焊缝金属的成分及性能;另一方面还可以使焊缝金属缓慢冷却,防止裂纹、气孔等缺陷的产生。与焊条电弧焊相比,其最大的优点就是焊缝质量高,焊接速度快,劳动条件好。
(3)钨极气体保护焊由于能很好的控制热输入,所以它足连接薄板金属和打底焊的一种极好方法。
(4)熔化极气体保护焊通常使用的气体有氩气、氦气、二氧化碳或这些气体的混合气。以氩气、氮气为保护气时称为熔化极惰性气体保护焊(在国际上简称为MIG焊);以惰性气体与氧化性气体(O2、CO2)的混合气时,或以C02和C02+02的混合气为保护气时,统称为熔化极活性气体保护焊(在国际上简称为MAG焊)。
(5)药芯焊丝电弧焊可以认为是熔化极气体保护焊的一种类型。其所使用的焊丝是药芯焊丝,焊丝的芯部装有各种组成成分的药粉。焊接时外加保护气体,主要是CO2气体,药粉受热分解或熔化,起着造气和造渣保护熔池、渗合金及稳弧等作用。
(6)下向焊是从国外引进的一种适用于管道环缝焊接的工艺方法。它是指在管道焊缝的顶端引弧,向下焊接的一种工艺方法。下向焊具有生产效率高、焊接质量好的优点。
Ⅵ 直缝埋弧焊钢管预焊技术
在管线建设中,油气长输管道正向着大口径高压力输送和海底管道厚壁化方向发展,越来越多的管线要求采用直缝埋弧焊钢管。随着我国几条大直缝埋弧焊钢管生产线的引进投产,掌握先进的直缝
埋弧焊焊接技术显得尤其重要。本文主要介绍直缝埋弧焊钢管的预焊技术。
1. 预焊技术现状
预焊是直缝埋弧焊钢管的焊接工艺组成部分,它将成型缝沿全长进行“浅焊”,是直缝埋弧焊钢管生产中的特殊工序之一。
在早期的直缝埋弧焊钢管生产中没有预焊,直到第二代UOE焊管机组中才开始出现了预焊机,但此时的预焊为间断式焊接,间距约300mm,到了UOE焊管机组发展的第三代(1968~1979年问),预焊得到
了极大的重视和发展,已将不连续方式变为连续方式,此阶段的预焊技术为现代预焊技术奠定了基础。
现代预焊技术采用了连续的、高速的气体保护焊(MAG)方式和焊缝激光跟踪,焊速可达到7 m/min,焊道成型平直美观。就MAG焊而言,目前有两种方法:一种是美国和德国等国家采用的单丝双电源
的大电流高速气体保护预焊,另一种是日本采用的双丝高速气体保护预焊。目前应用较多者为单丝高速气体保护预焊,我国从德国引进的两条直缝埋弧焊钢管生产线中预焊都是采用此种方法。
从钢管的质量标准中也可反映出预焊技术的发展,在最新的有关海洋、低温和酸性条件用管标准IS03183—3和GB/T9711.3的6.3款中,已明确提出不允许采用断续点焊,说明了预焊方式对钢管质量的重要性。
2. 预焊工艺
2.1 预焊工艺过程
预焊时,先将钢管管坯进行合缝,随后进行连续气体保护焊,在焊接同时进行焊缝状态和焊接质量的监测和反馈。具体工艺过程为:进口辊道接受管坯--调整管坯开口位置--输送装置递送管坯叶管坯合缝--确认合缝质量--焊枪下降准备焊接--启动激光跟踪器进行跟踪--打开保护气体及冷却水阀--启动焊接(管坯以焊接速度进给)_--到终端熄弧停焊--滞后关断保护气体--焊枪上升回位--管坯传往下道工序。到此,一个预焊周期完成。
在上述工序中,调整管坯的开口位置,是指将开口缝位置调整到要求位置,一般是12点钟位置,此项工作可通过电控系统中摄像监视系统进行。确认合缝质量,就是对合缝的错边量、合缝的间隙等
进行确认,只有确认后才可进行合缝的跟踪和焊接。为了保证焊接质量,在焊接启动前,检查专用焊枪,及时清理焊枪上的飞溅物,可适当喷些防飞溅剂。预焊的启弧和熄弧一般在启弧板和熄弧板上进行。管端约80mm范围内的成型缝在预焊结束后通过手工气体保护焊进行焊接。
2.2 预焊质量
预焊质量包括合缝质量和焊缝质量。
(1)合缝(也即成型缝)无错边或错边小于规定值,一般规定错边量≤板厚的8%,最大不超过1.5mm。
(2)要保证焊缝有适宜的熔透深度和熔敷量,既要保证焊后不开裂,不产生烧穿现象,又要控制焊缝高度,对外焊焊缝余高不产生影响。
(3)焊道连续,成型良好,以利于保证最后的外焊质量。
(4)焊缝不存在焊偏、气孔、裂纹、夹渣、烧穿及背面焊瘤等缺陷,要求焊缝中心偏差≤1 mm。
(5)无电弧灼伤,飞溅小,不影响管端坡口及表面质量。
(6)焊缝与母材匹配,焊缝金属理化性能达到质量要求。
2.3焊接材料及规范
(1)保护气体。
预焊所用的保护气体基本上可以与常规的CO:/MAG焊相同,纯CO:气体虽然可进行焊接,但为了减少飞溅,改善焊缝成型, 以利后续焊接工序,仍然推荐富氩气混合气体,并加大氩气的
配比。当焊速大于4m/min时,其保护气可采用三元混合气体(Ar+CO:+0:),该工艺过程即属于“大电流MAG焊”。
(2)焊丝。
同保护气体一样,预焊可以采用H08Mn2SiA等常规焊丝,但对于管线钢的预焊应采用专用焊丝,如X70钢采用MD82焊丝。针对不同的壁厚,可以选择西2.5mm、th3.2 mm、64.0 mm等不同直径的焊丝。
(3)焊接规范。
一般通过试验进行确定。对于不同规格的焊丝,当焊接线能量处于一定范围内、焊缝具有良好外观成型的同时,兼有较佳的理化性能。以舭.0mm焊丝为例,当线能量在3.5 ~4.0 kJ/
cm时,焊缝外观及理化性能均处于理想状态。
3. 预焊设备
预焊设备主要包括机械系统、液压系统、焊接系统、电控系统等部分。
3.1机械系统
机械系统是设备的主体,包括进出口辊道、驱动装置、合缝装置、内扩导向装置等,它实现管坯的合缝、输送。
(1)进出口辊道。进出口辊道完成管坯的接授、输送、开口缝位置调整等功能。根据预焊工艺 要求,管坯的下底标高不变,因此要求进出口辊道开口能根据钢管规格进行调节。
(2)驱动装置。预焊机一般采用焊枪固定、管坯移动方式。驱动装置实现管坯合缝和焊接时 的输送。根据预焊工艺要求,焊接速度连续可调,调节后稳定可靠,此要求也就是对驱动装置的驱动要求,因此一般采用直流调速电机。传动方式一般采用链传动。通过安装在传动链上的推块推动管坯连续进给。
(3)合缝装置。合缝装置完成管坯的收缩挤压合缝。为了适应妒06~thl422 mm(或咖1 625
mm)的管径范围,一般设计7~9组压辊对管坯进行控制,保证管坯合缝为一个理想的圆形合缝。装置包括机架、环形架、合缝压辊等,见图1。环形架可沿机架上下移动,从而保证管底下表面标高不变。合缝压辊实现对管坯的挤压合缝。每组压辊可沿环形架圆周方向移动。根据不同的管径,调整不同的辊梁夹角。每组压辊也可径向调节,以适应不同的钢管规格。为了保证管坯合缝的稳定,每组压辊在周向利用弹簧力锁紧,钢管换规格调型时再利用液压力开锁;其径向依靠液压力锁紧,保证合缝质量。
(4)内扩导向装置。内扩导向装置安装在机架管坯进口侧,用于对管坯内腔的支撑,减少错边 量,提高合缝质量,主要用于薄壁管。
3.2液压系统
液压系统完成机械系统的部分功能。一般液压系统设计有一集中的液压站,通过管道与合缝辊的周向松锁缸、径向退让保护缸、进出口辊道开口调整机构油缸等相联,以满足工艺对这些执行元件的
要求。
3.3焊接系统
焊接系统采用MAG焊连续焊接。主要包括焊机、专用焊枪、水冷系统、送丝系统、送气系统、地线装置和焊接操作机等。
为了满足大电流、高速焊接的要求,可采用两台DC一1000林肯焊机并联使用。送丝系统可采用与焊机相配套的NA一3送丝机构。专用焊枪采用喷嘴与导电杆分别冷却的双水冷式,保证焊接的稳定与使
用寿命。送气系统选用三元气体(Ar+CO:+O:)配比器,并带有流量检测开关。焊接操作机用来固定专用焊枪、激光跟踪机构等,根据钢管规格、焊点位置可以作纵向和上下位置调节。
3.4电控系统
电控系统实现对整个预焊区的控制,是一个由现场总路线构成的分布式控制系统(rCS)。主站可采用西门子s7系列作为控制中心,协调各个从站的动作。控制系统实现下列功能:
(1)焊接操作机的控制。由电机拖动,实现操作机横梁的升降和伸缩运动。
(2)焊接过程控制。采用程序控制器结合焊机本身的控制,实现对焊接过程的控制。
(3)摄像监视系统的控制。能够保证焊接过程中清楚地观察焊丝对缝及焊接进行的情况。
(4)激光跟踪的控制。进口激光跟踪,实现高速预焊的焊缝自动跟踪,同时,能够检测合缝的错边量,当错边量超标时,及时报警。
(5)断弧检测及控制。检测焊接过程中的焊接电流、电弧电压,信号综合后获取断弧信号,当检测到断弧时,自动停止焊接过程。
(6)气体流量的控制。在混流排出口处安装流量计,将信号引入控制系统,当气体流量不足时实现报警并停止焊接过程。
4. 预焊常见问题及处理措施预焊作业中常常出现错边、背面焊瘤、烧穿、气孔、飞溅、焊缝成型差等缺陷。
(1)错边。
这是预焊中最常见问题,错边超差,直接导致钢管的降级或报废。所以,预焊时要 求严格控制错边量。当整根或大半根钢管坯出现 错边超差时,一般是由于:①开口缝调整不到位 (合缝偏
向一侧);②合缝压辊调整不到位(压辊的周向角度不对,或以管坯中心线为轴线,左右压辊不对称,或相对的压辊的径向伸长量不一致),没有压圆;③预弯边没有预弯到位,板边存在直边现象所致。当管坯的头或尾出现错边超差时,一般是由于:①进出口辊道的位置不对;②环形架中心不对;③合缝压辊压圆不好,个别压辊位置偏差;④成型不好(成型后的管坯两边高低相差较 大;⑤开口缝宽在150 mill以上);⑥液压系统压力波动所致。
(2)背面焊瘤、烧穿。
背面焊瘤,若清除,耗时,影响生产过程的正常进行;不清除,影响内焊焊接成型及内焊焊缝的跟踪。烧穿,影响内外焊质量,需填补。产生背面焊瘤和烧穿的原因,一般是:①合
缝不紧,也有可能是液压系统压力过低;②成型不好,圆度偏差大;③预焊工艺参数选择不当。一定的焊接电流和电弧电压要配以适当的焊接速度,线能量过大或焊速过低,都易产生背面焊 瘤和烧穿。
(3)气孔。
预焊焊缝气孑L导致内外焊的内部缺陷。预焊焊缝产生气孔,一般是由于:①保护气体质量不佳,如含有水分,压力流量不够等旧3;②焊枪出现部分堵塞,保护气体形成的气罩不均,有害气体搅入;③坡口上有锈蚀、油污等所。 (4)焊缝成型差。焊缝成型差,影响后序的内封性能,确保了管体和管件之间不会因松动引起 渗漏。(2)DNl25~DN600的衬塑复合钢管因口径较大,拧紧螺纹较困难,故采用沟槽式管接头连接,执行CJ/T156标准。我公司生产的沟槽式管接头¨j,出厂前承受过3.75 MPa的耐压试验、0.08 MPa的真空试验和使用压力1.5倍的气压试验。