导航:首页 > 德国资讯 > 德国密码机怎么创造的

德国密码机怎么创造的

发布时间:2023-02-18 03:22:01

① 德国的伊尼格玛。

英国的【超级机密】说到【超级机密】首先要从德国的“艾尼格马密码机”说起。”艾尼格马密码机“是波兰人发明的,由于在商业上运气不佳,后来被德国改装成军用新型密码机-“迷”。该机器结构结实、机器性复杂便于携带,尽管在战场被敌方俘获也无关紧要,以为只要调节一下机器上的转子瞬间就会产生无数不同的密码,除非了解程序否则毫无用处。德国统帅部的陆、海、空军以及党卫军和其他国家机构的通信都要用艾尼格马密码机进行加密。因此,艾尼格马密码机也就成了德军“闪电战术”的通讯装置-“迷”。

但二战前夕事情发生变化,1939年,波兰情况部门向英国提供他们多年研制发明的一部“博姆”解码机。60部博姆解码机同时工作10小时就能将德军最新型的艾尼格马秘密机进行解密。英国人对机器进行改装后,把它安放在布莱奇蕾庄园内。正式命名为【超级机密】。

希特勒也经常用艾尼格马密码机同远在北非的隆美尔进行联络。英军住北非部队司令蒙哥马利能够和隆美尔同时看到希特勒的电文。

【超级机密】无疑是摧毁轴心国以及地中海补给线起到了起足轻重的作用。【超级机密】也成了整个第二次世界大战盟军及丘吉尔手中的一张王牌。情报是战争的血液,对“元首”来说毫无价值。德国的失败也就在意料之中!

【超级机密】大本营-布莱奇蕾庄园

② 二战期间德国密码是怎样被破译的呢

敦刻尔克大撤退后,德国即将启动入侵英国本土,英国军情局在伦敦郊外的布雷奇利庄园设立了密码破译中心。在这里,有数百名工作人员参与破译德国军事行动的绝密情报。而这所庄园以及破译工作,同样也被英国政府列为最高机密,其代号就是"超级机密"。

正在英国人毫无头绪时,1938年,一位犹太人向英国情报人员透露,他曾是"艾尼格玛"的设计人员之一。英国人经过仔细甄别后,相信了他。这位犹太人真的复制出了一台"艾尼格玛"密码机,按照英国人的说法,这是仿制工程的奇迹,而这的确帮了英国人的大忙。



针对德国空军司令戈林要求夺取制空权的指令,英国皇家空军制定了集中优势兵力打击敌人的方案。由于英国空军的飞机数量没有德国多,所以只能在适当时间、适当地方和适当高度,集中战斗机中队及主要防御力量,对付敌人的主攻力量。依赖预警雷达及破译的德国军事情报,英国皇家空军总能掐着纳粹空军到达的时刻精准升空拦截,而不需要时时空中巡逻防备德军突袭——英国空军由此大大减少了飞行员体力消耗及汽油等战略物资消耗。

1940年8月13日,苏塞克斯和肯特上空,80架德军"道尼尔 17"轰炸机群,以及更多数量的"容克 88"俯冲轰炸机,飞往不列颠腹地及海岸线执行轰炸任务。由于天空浓云密布,德军护航战斗机无法按计划起飞,轰炸机只好单独出击。

英国空军司令部事先已知晓德军行动计划,当在雷达上发现德国飞机后,立即启动早已就绪的作战方案……这次交锋,德国空军共损失飞机47架,另有80多架被击伤,而英国空军仅损失飞机13架。

③ 28天亡国的波兰,靠这项技术打败了德国,你知道吗

1943年,隆美尔离开了他征战两年的北非。不过,和他当初势在必得的精神头比起来,此时的离去,多少有些伤感和不甘。糟糕的后勤补给,让他“壮志未酬”,而始终不在状态的意大利人,让他既鄙视,又痛恨。

隆美尔很多次在公众场合,对散漫的意大利人进行抨击。在他看来,非洲军团的补给运不上,以及每次进攻都不顺,很有可能是他们向英军提供了情报。殊不知,出卖情报的恰恰是一名德国人,隆美尔冤枉了意大利人,这是怎么回事呢?

隆美尔到死都不知道,让其在非洲步履艰难的,不光是不争气的意大利人与棘手的后勤保障,还有早已被破解的“恩尼格玛”。与其说德军是被盟军的强大实力打败,倒不如是被“自己人”打败,因为那个化名艾斯克的德国人,出卖了德国。

大家认为呢?欢迎留言和讨论。

参考文献:《第二次世界大战》、《隆美尔传》、《步兵攻击》

④ 二战期间,德国研制的enigma机的工作原理是什么

恩尼格玛密码机(德语:Enigma,又译哑谜机、或谜)在密码学史中是一种用于加密与解密文件的密码机。确切地说,恩尼格玛是一系列相似的转子机械的统称,它包括了一系列不同的型号。恩尼格玛在1920年代早期开始被用于商业,也被一些国家的军队与政府采用过,在这些国家中,最着名的是第二次世界大战时的纳粹德国。恩尼格玛密码机的大部分设置都会在一段时间(一般为一天)以后被更换。
保密原理:
键盘一共有26个键,键盘排列和广为使用的计算机键盘基本一样,只不过为了使通讯尽量地短和难以破译,空格、数字和标点符号都被取消,而只有字母键。键盘上方就是显示器,这可不是意义上的屏幕显示器,只不过是标示了同样字母的26个小灯泡,当键盘上的某个键被按下时,和这个字母被加密后的密文字母所对应的小灯泡就亮了起来,就是这样一种近乎原始的“显示”。在显示器的上方是三个直径6厘米的转子,它们的主要部分隐藏在面板下,转子才是“恩尼格玛”密码机最核心关键的部分。如果转子的作用仅仅是把一个字母换成另一个字母,那就是密码学中所说的“简单替换密码”,而在公元九世纪,阿拉伯的密码破译专家就已经能够娴熟地运用统计字母出现频率的方法来破译简单替换密码,

柯南·道尔在他着名的福尔摩斯探案《跳舞的小人》里就非常详细地叙述了福尔摩斯使用频率统计法破译跳舞人形密码(也就是简单替换密码)的过程。——之所以叫“转子”,因为它会转!这就是关键!当按下键盘上的一个字母键,相应加密后的字母在显示器上通过灯泡闪亮来显示,而转子就自动地转动一个字母的位置。举例来说,当第一次键入A,灯泡B亮,转子转动一格,各字母所对应的密码就改变了。第二次再键入A时,它所对应的字母就可能变成了C;同样地,第三次键入A时,又可能是灯泡D亮了。——这就是“恩尼格玛”难以被破译的关键所在,这不是一种简单替换密码。同一个字母在明文的不同位置时,可以被不同的字母替换,而密文中不同位置的同一个字母,又可以代表明文中的不同字母,字母频率分析法在这里丝毫无用武之地了。这种加密方式在密码学上被称为“复式替换密码”。

但是如果连续键入26个字母,转子就会整整转一圈,回到原始的方向上,这时编码就和最初重复了。而在加密过程中,重复的现象就很是最大的破绽,因为这可以使破译密码的人从中发现规律。于是“恩尼格玛”又增加了一个转子,当第一个转子转动整整一圈以后,它上面有一个齿轮拨动第二个转子,使得它的方向转动一个字母的位置。假设第一个转子已经整整转了一圈,按A键时显示器上D灯泡亮;当放开A键时第一个转子上的齿轮也带动第二个转子同时转动一格,于是第二次键入A时,加密的字母可能为E;再次放开键A时,就只有第一个转子转动了,于是第三次键入A时,与之相对应的就是字母就可能是F了。

因此只有在26x26=676个字母后才会重复原来的编码。而事实上“恩尼格玛”有三个转子(二战后期德国海军使用的“恩尼格玛”甚至有四个转子!),那么重复的概率就达到26x26x26=17576个字母之后。在此基础上谢尔比乌斯十分巧妙地在三个转子的一端加上了一个反射器,把键盘和显示器中的相同字母用电线连在一起。反射器和转子一样,把某一个字母连在另一个字母上,但是它并不转动。乍一看这么一个固定的反射器好像没什么用处,它并不增加可以使用的编码数目,但是把它和解码联系起来就会看出这种设计的别具匠心了。当一个键被按下时,信号不是直接从键盘传到显示器,而是首先通过三个转子连成的一条线路,然后经过反射器再回到三个转子,通过另一条线路再到达显示器上,比如说上图中A键被按下时,亮的是D灯泡。如果这时按的不是A键而是D键,那么信号恰好按照上面A键被按下时的相反方向通行,最后到达A灯泡。换句话说,在这种设计下,反射器虽然没有象转子那样增加不重复的方向,但是它可以使解码过程完全重现编码过程。

使用“恩尼格玛”通讯时,发信人首先要调节三个转子的方向(而这个转子的初始方向就是密匙,是收发双方必须预先约定好的),然后依次键入明文,并把显示器上灯泡闪亮的字母依次记下来,最后把记录下的闪亮字母按照顺序用正常的电报方式发送出去。收信方收到电文后,只要也使用一台“恩尼格玛”,按照原来的约定,把转子的方向调整到和发信方相同的初始方向上,然后依次键入收到的密文,显示器上自动闪亮的字母就是明文了。加密和解密的过程完全一样,这就是反射器的作用,同时反射器的一个副作用就是一个字母永远也不会被加密成它自己,因为反射器中一个字母总是被连接到另一个不同的字母。

“恩尼格玛”加密的关键就在于转子的初始方向。当然如果敌人收到了完整的密文,还是可以通过不断试验转动转子方向来找到这个密匙,特别是如果破译者同时使用许多台机器同时进行这项工作,那么所需要的时间就会大大缩短。对付这样“暴力破译法”(即一个一个尝试所有可能性的方法),可以通过增加转子的数量来对付,因为只要每增加一个转子,就能使试验的数量乘上26倍!不过由于增加转子就会增加机器的体积和成本,而密码机又是需要能够便于携带的,而不是一个带有几十个甚至上百个转子的庞然大物。那么方法也很简单,“恩尼格玛”密码机的三个转子是可以拆卸下来并互相交换位置,这样一来初始方向的可能性一下就增加了六倍。假设三个转子的编号为1、2、3,那么它们可以被放成123-132-213-231-312-321这六种不同位置,当然收发密文的双方除了要约定转子自身的初始方向,还要约好这六种排列中的一种。

而除了转子方向和排列位置,“恩尼格玛”还有一道保障安全的关卡,在键盘和第一个转子之间有块连接板。通过这块连接板可以用一根连线把某个字母和另一个字母连接起来,这样这个字母的信号在进入转子之前就会转变为另一个字母的信号。这种连线最多可以有六根(后期的“恩尼格玛”甚至达到十根连线),这样就可以使6对字母的信号两两互换,其他没有插上连线的字母则保持不变。——当然连接板上的连线状况也是收发双方预先约定好的。

就这样转子的初始方向、转子之间的相互位置以及连接板的连线状况就组成了“恩尼格玛”三道牢不可破的保密防线,其中连接板是一个简单替换密码系统,而不停转动的转子,虽然数量不多,但却是点睛之笔,使整个系统变成了复式替换系统。连接板虽然只是简单替换却能使可能性数目大大增加,在转子的复式作用下进一步加强了保密性。让我们来算一算经过这样处理,要想通过“暴力破解法”还原明文,需要试验多少种可能性:

三个转子不同的方向组成了26x26x26=17576种可能性;

三个转子间不同的相对位置为6种可能性;

连接板上两两交换6对字母的可能性则是异常庞大,有100,391,791,500种;

于是一共有17576x6x100,391,791,500,其结果大约为10,000,000,000,000,000!即一亿亿种可能性!这样庞大的可能性,换言之,即便能动员大量的人力物力,要想靠“暴力破解法”来逐一试验可能性,那几乎是不可能的。而收发双方,则只要按照约定的转子方向、位置和连接板连线状况,就可以非常轻松简单地进行通讯了。这就是“恩尼格玛”密码机的保密原理

⑤ 二战德国谜密密码

英纳格玛(ENGMA)是由德国发明家亚瑟·谢尔比乌斯(ArthurScherbius),被誉为“超级密码”,并使密码编译从人工手写时代跨越到了机器操作时代。并且为德国在二战时期的密码加密做了不小的贡献。

英纳格玛(ENGMA)又称恩格尼码,在所有用于军事和外交的密码里,最着名的恐怕应属第二次世界大战中德国方面使用的ENIGMA(读作“恩尼格玛”,意为“谜”)。

(5)德国密码机怎么创造的扩展阅读

恩格尼码的诞生:

直到第一次世界大战结束为止,所有密码都是使用手工来编码的。直截了当地说,就是铅笔加纸的方式。在我国,邮电局电报编码和译码直到很晚(大概是上个世纪八十年代初)还在使用这种手工方法。

手工编码的方式给使用密码的一方带来很多的不便。首先,这使得发送信息的效率极其低下。明文(就是没有经过加密的原始文本)必须由加密员人工一个 一个字母地转换为密文。

考虑到不能多次重复同一种明文到密文的转换方式(这很容易使敌人猜出这种转换方式),和民用的电报编码解码不同,加密人员并不能把 转换方式牢记于心。转换通常是采用查表的方法,所查表又每日不同,所以解码速度极慢。

而接收密码一方又要用同样的方式将密文转为明文。其次,这种效率的低 下的手工操作也使得许多复杂的保密性能更好的加密方法不能被实际应用,而简单的加密方法根本不能抵挡解密学的威力。

解密一方当时正值春风得意之时,几百年来被认为坚不可破的维吉耐尔(Vigenere)密码和它的变种也被破解。而无线电报的发明,使得截获密文易如反掌。无论是军事方面还是民用商业方面都需要一种可靠而又有效的方法来保证通讯的安全。

1918年,德国发明家亚瑟.谢尔比乌斯(Arthur Scherbius)和他的朋友理乍得.里特(Richard Ritter)创办了谢尔比乌斯和里特公司。这是一家专营把新技术转化为应用方面的企业,很象现在的高新技术公司,利润不小,可是风险也很大。

谢尔比乌斯 负责研究和开发方面,紧追当时的新潮流。他曾在汉诺威和慕尼黑研究过电气应用,他的一个想法就是要用二十世纪的电气技术来取代那种过时的铅笔加纸的加密方 法。

亚瑟.谢尔比乌斯 谢尔比乌斯发明的加密电子机械名叫ENIGMA,在以后的年代里,它将被证明是有史以来最为可K的加密系统之一,而对这种可K性的盲目乐观,又使它的使用者遭到了灭顶之灾。

⑥ 三国合力破译,二战时期德国使用的埃尼格玛密码机有多厉害

埃尼格玛密码机是一种用于加密与解密文件的密码机,更加确切的说,埃尼格玛是对二战时期德国使用的一系列相似的转子机械加解密机器的统称,它包括了许多不同的型号。 主要是德国科学家们针对当时一再失密的情况,费尽心机发明的密码再加密机,是当时最复杂的保密机器。直到1939年9月,在破译精英们不懈努力和波、法突破德国陆军埃尼格玛密钥的帮助下,英国密码专家们才破译了德国空军的“红色”密钥。但是,埃尼格玛的“黄色”密钥,仍无法掌握密码规律当时,这个密钥还不是被破译出来的,而是在一次战斗中,英国海军在挪威海岸的一架德机的残骸中,找到了一本密码本表,这才揭开了埃尼格玛的神秘面纱。

⑦ 图灵发明的人工智能,破译了德国恩格密码机

最近在看西蒙·辛格写的《密码故事》,书挺不错的,作者用通俗易懂的方式介绍了历史上大量的密码。而目前为止,作者着墨最多的,还是二战中德军的传奇密码机——恩格玛(Enigma)。不过之前看过另外一本专门讲述恩格玛的书《密码传奇》,所以这本书并未带给我太多的惊喜,只是将一些以前不怎么清楚的技术细节理顺了。下面是一些关于恩格玛的细节:
1、德国工程师阿瑟·谢尔比斯在1918年发明了恩格玛机器,最开始的时候它有三个扰频器(加密轮)、一个插件板(可将26个字母中的六对进行交换),转轮之间的次序可以随意更换,这样,总共可能的加密顺序就达到了26^3*6!*100381791500,这是一个在十的十六次方量级的天文数字。

▲在20世纪30年代后期和战争期间使用的恩格玛机。
2、波兰的情报机关是最早破译出恩格玛的机构,这要归功于一个波兰数学家:雷臼斯基。雷臼斯基制造了一种密码破译机——炸弹,它专门用来尝试寻找扰频器的排列顺序,六台炸弹组成的单位可以在两个小时之内就将秘钥找到。但是,1938年12月德国人将他们的密码机升级了,扰频器变成了五个,使用时每天随机选择其中的三个,仅此一项就将密码破译的难度变成了原来的十倍。一个月后,德国人将插件板上的导线数由六条增加到了十条。雷臼斯基已经无法破译德国人的密码了。
▲玛丽安·雷臼斯基
▲雷臼斯基在截获信息中发现,每个信息都是由6个字母开始,这6个字母是三字母信息秘钥按照预先确定的日秘钥重复两次译成密码获得。图为一组信息的第一个和第四个字母组成的循环。 Rejewski利用这些循环在1932年演绎了Enigma转子接线,并破解了日秘钥设置。
3、但德国恩格玛操作员的一些坏毛病使得密码安全性大打折扣。按照规定,信息秘钥应该是三个字母的随机组合,但是因为操作人员的偷懒,他们一般会选择键盘上连续的三个字母作为信息秘钥发送出去。这就大大简化了密码破译的难度。此外,图灵还发现,德军在每天早上时将会发送一条关于天气的报告,此时截获的密文中就必然包含一个词wetter(在德语中是天气的意思)。又由这些电文往往都有严格的格式要求,图灵甚至凭直觉就能猜出wetter这个词的大致位置,这也简化了破解密码的难度。
4、德国海军的密码是最难破译的。德国海军的扰频器不是五个,而是八个。在标准的恩格玛机器中,反射器通常安装在一个特定的方位,但是在德国海军里,反射器可以安装

⑧ 二战期间,德国研制的enigma机的工作原理是什么

ENIGMA看起来是一个装满了复杂而精致的元件的盒子。不过要是我们把它打开来,就可以看到它可以被分解成相当简单的几部分。下面的图是它的最基本部分的示意图,我们可以看见它的三个部分:键盘、转子和显示器。

在上面ENIGMA的照片上,我们看见水平面板的下面部分就是键盘,一共有26个键,键盘排列接近我们现在使用的计算机键盘。为了使消息尽量地短和更难以破译,空格和标点符号都被省略。在示意图中我们只画了六个键。实物照片中,键盘上方就是显示器,它由标示了同样字母的26个小灯组成,当键盘上的某个键被按下时,和此字母被加密后的密文相对应的小灯就在显示器上亮起来。同样地,在示意图上我们只画了六个小灯。在显示器的上方是三个转子,它们的主要部分隐藏在面板之下,在示意图中我们暂时只画了一个转子。
键盘、转子和显示器由电线相连,转子本身也集成了6条线路(在实物中是26条),把键盘的信号对应到显示器不同的小灯上去。在示意图中我们可以看到,如果按下a键,那么灯B就会亮,这意味着a被加密成了B。同样地我们看到,b被加密成了A,c被加密成了D,d被加密成了F,e被加密成了E,f被加密成了C。于是如果我们在键盘上依次键入cafe(咖啡),显示器上就会依次显示DBCE。这是最简单的加密方法之一,把每一个字母都按一一对应的方法替换为另一个字母,这样的加密方式叫做“简单替换密码”。
简单替换密码在历史上很早就出现了。着名的“凯撒法”就是一种简单替换法,它把每个字母和它在字母表中后若干个位置中的那个字母相对应。比如说我们取后三个位置,那么字母的一一对应就如下表所示:
明码字母表:abcdefghijklmnopqrstuvwxyz
密码字母表:DEFGHIJKLMNOPQRSTUVWXYZABC
于是我们就可以从明文得到密文:(veni, vidi, vici,“我来,我见,我征服”是儒勒·凯撒征服本都王法那西斯后向罗马元老院宣告的名言)
明文:veni, vidi, vici
密文:YHAL, YLGL, YLFL
很明显,这种简单的方法只有26种可能性,不足以实际应用。一般上是规定一个比较随意的一一对应,比如
明码字母表:abcdefghijklmnopqrstuvwxyz
密码字母表:JQKLZNDOWECPAHRBSMYITUGVXF
甚至可以自己定义一个密码字母图形而不采用拉丁字母。但是用这种方法所得到的密文还是相当容易被破解的。至迟在公元九世纪,阿拉伯的密码破译专家就已经娴熟地掌握了用统计字母出现频率的方法来击破简单替换密码。破解的原理很简单:在每种拼音文字语言中,每个字母出现的频率并不相同,比如说在英语中,e出现的次数就要大大高于其他字母。所以如果取得了足够多的密文,通过统计每个字母出现的频率,我们就可以猜出密码中的一个字母对应于明码中哪个字母(当然还要通过揣摩上下文等基本密码破译手段)。柯南·道尔在他着名的福尔摩斯探案集中《跳舞的人》里详细叙述了福尔摩斯使用频率统计法破译跳舞人形密码的过程。
所以如果转子的作用仅仅是把一个字母换成另一个字母,那就没有太大的意思了。但是大家可能已经猜出来了,所谓的“转子”,它会转动!这就是ENIGMA的最重要的设计——当键盘上一个键被按下时,相应的密文在显示器上显示,然后转子的方向就自动地转动一个字母的位置(在示意图中就是转动1/6圈,而在实际中转动1/26圈)。下面的示意图表示了连续键入3个b的情况:

当第一次键入b时,信号通过转子中的连线,灯A亮起来,放开键后,转子转动一格,各字母所对应的密码就改变了;第二次键入b时,它所对应的字母就变成了C;同样地,第三次键入b时,灯E闪亮。

照片左方是一个完整的转子,右方是转子的分解,我们可以看到安装在转子中的电线。

这里我们看到了ENIGMA加密的关键:这不是一种简单替换密码。同一个字母b在明文的不同位置时,可以被不同的字母替换,而密文中不同位置的同一个字母,可以代表明文中的不同字母,频率分析法在这里就没有用武之地了。这种加密方式被称为“复式替换密码”。
但是我们看到,如果连续键入6个字母(实物中26个字母),转子就会整整转一圈,回到原始的方向上,这时编码就和最初重复了。而在加密过程中,重复的现象是很危险的,这可以使试图破译密码的人看见规律性的东西。于是我们可以再加一个转子。当第一个转子转动整整一圈以后,它上面有一个齿拨动第二个转子,使得它的方向转动一个字母的位置。看下面的示意图(为了简单起见,现在我们将它表示为平面形式):

这里(a)图中我们假设第一个转子(左边的那个)已经整整转了一圈,按b键时显示器上D灯亮;当放开b键时第一个转子上的齿也带动第二个转子同时转动一格,于是(b)图中第二次键入b时,加密的字母为F;而再次放开键b时,就只有第一个转子转动了,于是(c)图中第三次键入b 时,与b相对应的就是字母B。
我们看到用这样的方法,要6*6=36(实物中为26*26=676)个字母后才会重复原来的编码。而事实上ENIGMA里有三个转子(二战后期德国海军用ENIGMA甚至有四个转子),不重复的方向个数达到26*26*26 =17576个。
不仅如此在三个转子的一端还十分巧妙地加了一个反射器,而把键盘和显示器中的相同字母用电线连在一起。反射器和转子一样,把某一个字母连在另一个字母上,但是它并不转动。乍一看这么一个固定的反射器好象没什么用处,它并不增加可以使用的编码数目,但是把它和解码联系起来就会看出这种设计的别具匠心了。见下图:

我们看见这里键盘和显示器中的相同字母由电线连在一起。事实上那是一个很巧妙的开关,不过我们并不需要知道它的具体情况。我们只需要知道,当一个键被按下时,信号不是直接从键盘传到显示器(要是这样就没有加密了),而是首先通过三个转子连成的一条线路,然后经过反射器再回到三个转子,通过另一条线路再到达显示器上,比如说上图中b键被按下时,亮的是D灯。我们看看如果这时按的不是b键而是d键,那么信号恰好按照上面b键被按下时的相反方向通行,最后到达B灯。换句话说,在这种设计下,反射器虽然没有象转子那样增加可能的不重复的方向,但是它可以使译码的过程和编码的过程完全一样。

反射器

想象一下要用ENIGMA发送一条消息。发信人首先要调节三个转子的方向,使它们处于17576个方向中的一个(事实上转子的初始方向就是密匙,这是收发双方必须预先约定好的),然后依次键入明文,并把闪亮的字母依次记下来,然后就可以把加密后的消息用比如电报的方式发送出去。当收信方收到电文后,使用一台相同的ENIGMA,按照原来的约定,把转子的方向调整到和发信方相同的初始方向上,然后依次键入收到的密文,并把闪亮的字母依次记下来,就得到了明文。于是加密和解密的过程就是完全一样的——这都是反射器起的作用。稍微考虑一下,我们很容易明白,反射器带来的一个副作用就是一个字母永远也不会被加密成它自己,因为反射器中一个字母总是被连接到另一个不同的字母。

安装在ENIGMA中的反射器和三个转子

于是转子的初始方向决定了整个密文的加密方式。如果通讯当中有敌人监听,他会收到完整的密文,但是由于不知道三个转子的初始方向,他就不得不一个个方向地试验来找到这个密匙。问题在于17576 个初始方向这个数目并不是太大。如果试图破译密文的人把转子调整到某一方向,然后键入密文开始的一段,看看输出是否象是有意义的信息。如果不象,那就再试转子的下一个初始方向……如果试一个方向大约要一分钟,而他二十四小时日夜工作,那么在大约两星期里就可以找遍转子所有可能的初始方向。如果对手用许多台机器同时破译,那么所需要的时间就会大大缩短。这种保密程度是不太足够的。
当然还可以再多加转子,但是我们看见每加一个转子初始方向的可能性只是乘以了26。尤其是,增加转子会增加ENIGMA 的体积和成本。然而这种加密机器必须是要便于携带的(事实上它最终的尺寸是34cm*28cm*15cm),而不是一个具有十几个转子的庞然大物。在Enigma的设计当中,机器的三个转子是可以拆卸下来互相交换的,这样一来初始方向的可能性变成了原来的六倍。假设三个转子的编号为1、2、3,那么它们可以被放成123-132-213-231-312-321六种不同位置,当然现在收发消息的双方除了要预先约定转子自身的初始方向,还要约定好这六种排列中的使用一种。
其次,键盘和第一转子之间还设计了一个连接板。这块连接板允许使用者用一根连线把某个字母和另一个字母连接起来,这样这个字母的信号在进入转子之前就会转变为另一个字母的信号。这种连线最多可以有六根(后期的ENIGMA具有更多的连线),这样就可以使6对字母的信号互换,其他没有插上连线的字母保持不变。在上面ENIGMA的实物图里,我们看见这个连接板处于键盘的下方。当然连接板上的连线状况也是收发信息的双方需要预先约定的。

在上面示意图中,当b键被按下时,灯C亮。

于是转子自身的初始方向,转子之间的相互位置,以及连接板连线的状况就组成了所有可能的密匙,让我们来算一算一共到底有多少种。
三个转子不同的方向组成了26*26*26=17576种不同可能性;
三个转子间不同的相对位置为6种可能性;
连接板上两两交换6对字母的可能性数目非常巨大,有100391791500种;
于是一共有17576*6*100391791500,大约为10000000000000000,即一亿亿种可能性。
只要约定好上面所说的密匙,收发双方利用ENIGMA就可以十分容易地进行加密和解密。但是如果不知道密匙,在这巨大的可能性面前,一一尝试来试图找出密匙是完全没有可能的。我们看见连接板对可能性的增加贡献最大,那么为什么要那么麻烦地设计转子之类的东西呢?原因在于连接板本身其实就是一个简单替换密码系统,在整个加密过程中,连接是固定的,所以单使用它是十分容易用频率分析法来破译的。转子系统虽然提供的可能性不多,但是在加密过程中它们不停地转动,使整个系统变成了复式替换系统,频率分析法对它再也无能为力,与此同时,连接板却使得可能性数目大大增加,使得暴力破译法(即一个一个尝试所有可能性的方法)望而却步。

⑨ 英格玛机是谁发明者

恩尼格玛机由德国发明家亚瑟•谢尔比乌斯和理乍得•里特于1918年制造。确切地说,是一种用于加密与解密文件的密码机。大体由三部分组成:键盘、转子和显示器。由于其性质,谢尔比乌斯将这种电气编码机械取名“恩尼格玛”(ENIGMA,意为哑谜),它来源于英国作曲家爱德华•艾尔加的《谜之变奏曲》。
谢尔比乌斯在1918年为“恩尼格玛”密码机申请了专利,于1920年开发出产品

⑩ 恩尼格玛密码机的发明历史

美国大片《U-571》,告诉人们“恩尼格玛”密码机是战争中,同盟国费尽心机想要获得的尖端秘密,是战胜德国海军潜艇的关键所在。历史也确实如此,对于潜艇作战,尤其是德国海军的“狼群”战术来说,无线电通讯是潜艇在海上活动,获取信息通报情况的最重要的手段,而“恩尼格玛”密码机则是关乎整个无线电通讯安全的设备,其重要性可想而知。
自从无线电和摩尔斯电码问世后,军事通讯进入了一个崭新的时代,但是无线电通讯完全是一个开放的系统,在己方接受电文的同时,对方也可“一览无遗”,因此人类历史上伴随战争出现的密码,也就立即与无线电结合,出现了无线电密码。直到第一次世界大战结束,所有无线电密码都是使用手工编码。毫无疑问,手工编码效率极其低下,同时由于受到手工编码与解码效率的限制,使得许多复杂的保密性强的加密方法无法在实际中应用,而简单的加密方法又很容易被破译,因此在军事通讯领域,急需一种安全可靠,而又简便有效的方法。
1918年德国发明家亚瑟·谢尔比乌斯(Arthur Scherbius)和理乍得·里特(Richard Ritter)创办了一家新技术应用公司,曾经学习过电气应用的谢尔比乌斯,想利用现代化的电气技术,来取代手工编码加密方法,发明一种能够自动编码的机器。谢尔比乌斯给自己所发明的电气编码机械取名“恩尼格玛”(ENIGMA,意为哑谜),乍看是个放满了复杂而精致的元件的盒子,粗看和打字机有几分相似。可以将其简单分为三个部分:键盘、转子和显示器。
操作步骤
德军的各支部队使用一些不同的通讯线路,每条线路中的恩尼格玛密码机都有不同的设置。为了使一条信息能够正确地被加密及解密,发送信息与接收信息的恩尼格玛密码机的设置必须相同;转子必须一模一样,而且它们的排列顺序,起始位置和接线板的连线也必须相同。所有这些设置都需要在使用之前确定下来,并且会被记录在密码本中。
恩尼格玛密码机的设置包含了以下几个方面:
转子:转子的结构及顺序。起始位置:由操作员决定,发送每条消息时都不一样。字母环:字母环与转子线路的相对位置。接线板:接线板的连线。在末期版本中还包括了反射器的线路。恩尼格玛密码机被设计成即使在转子的线路设置被敌人知道时仍然会很安全,尽管在实际使用中德军尽了全力来防止线路设置被泄露出去。如果线路设置为未知,那么最多需要尝试10种情况才可能推算出恩尼格玛密码机的密码;当线路和其它一些设置已知时,也最多需要尝试10次。恩尼格玛密码机的使用者对它的保密性很有信心,因为敌人不可能使用穷举法来找出密码。
指示器
恩尼格玛密码机的大部分设置都会在一段时间(一般为一天)以后被更换。但是,转子的起始位置却是每发送一条信息就要更换的,因为如果一定数量的文件都按照相同的加密设置来加密的话,密码学家就会从中得到一些信息,并且有可能利用频率分析来破译这个密码。为了防止这种事情发生,转子的起始位置在每次发送信息之前都会被改变。这个方法被称作“指示器步骤”。
最早期的指示器步骤成为了波兰密码学家破译恩尼格玛密码机密码的突破口。在这个步骤中,操作员会先按照密码本中的记录来设置机器,我们假设这时的转子位置为AOH,之后他会随意打三个字母,假设为EIN,接着为了保险起见,他会将这三个字母重新打一遍。这六个字母会被转换成其它六个字母,这里假设为XHTLOA。最后,操作员会将转子重新设置为EIN,即他一开始打的三个字母,之后输入密电原文。
在接收方将信息解密时,他会使用相反的步骤。首先,他也会将转子按照密码本中的记录设置好,然后他就会打入密文中的头六个字母,即XHTLOA,如果发送方操作正确的话,显示板上就会显示EINEIN。这时接收方就会将转子设置为EIN,之后他就可将密电打入而得到原文了。
这个步骤的保密性差主要有两个原因。首先,操作员将转子的设置打到了密电中,这就使第三方能够得知转子设置。第二,这个步骤中出现了重复输入,而这是一个严重的错误。这个弱点使波兰密码局早在1932年就破译了二战之前的德军恩尼格玛系统。但是从1940年开始,德国改变了这个步骤,它的安全性也就提高了。
这个步骤只被用于德国陆军和空军。德国海军发送信息的步骤要复杂的多。在被恩尼格玛密码机发送之前,信息会先被Kurzsignalheft密码本进行加密。这个密码本将一个句子替换为了四个字母。它转化的句子包括了补给、位置、港湾名称、国家、武器、天气、敌人位置、日期和时间等内容。
缩写与指导
德国陆军的恩尼格玛密码机的键盘上只有26个字母,标点符号由字母组合来代替,X相当于空格。在各军种的恩尼格玛密码机中,X都相当于句号。有一些标点符号在不同军种的密码系统中被不同的字母组合代替。陆军的系统使用ZZ来表示逗号,FRAGE或FRAQ则表示问号。但是德国海军用来表示逗号及问号的则分别为Y和UD。Acht(意为“八”)和Richtung(意为“方向”)中的字母组合CH则由Q来代替。CENTA、MILLE和MYRIA分别表示两个、三个和四个零。
德国陆军和空军将每条信息都翻译成5个字母的代码。使用四转子恩尼格玛密码机的德国海军则将信息翻译成4字母代码。经常用到的词语代码与原词语的差别越大越好。Minensuchboot(意为“扫雷艇”)这样的词语可以被表示为MINENSUCHBOOT、MINBOOT、MMMBOOT 或MMM354。比较长的信息会被分成几个部分来发送。

阅读全文

与德国密码机怎么创造的相关的资料

热点内容
金华义乌国际商贸城雨伞在哪个区 浏览:759
俄罗斯如何打通飞地立陶宛 浏览:1136
韩国如何应对流感 浏览:918
在德国爱他美白金版卖多少钱 浏览:959
澳大利亚养羊业为什么发达 浏览:1392
如何进入法国高等学府 浏览:1472
巴西龟喂火腿吃什么 浏览:1404
巴西土地面积多少万平方千米 浏览:1265
巴西龟中耳炎初期要用什么药 浏览:1228
国际为什么锌片如此短缺 浏览:1631
巴西是用什么规格的电源 浏览:1454
在中国卖的法国名牌有什么 浏览:1357
在菲律宾投资可用什么样的居留条件 浏览:1267
德国被分裂为哪些国家 浏览:876
澳大利亚跟团签证要什么材料 浏览:1207
德国大鹅节多少钱 浏览:875
去菲律宾过关时会盘问什么 浏览:1198
澳大利亚女王为什么是元首 浏览:1024
有什么免费的韩国小说软件 浏览:756
申请德国学校如何找中介 浏览:663