Ⅰ 德国的电压是多少
德国民用电压和频率为:220V/50Hz
插座为:两相插座(圆 形),到德国需要带转换插头。
欧盟标准电压为:230V/50Hz
Ⅱ 德国的电压是多大的
德国的民用电压是230V,不过和我国用的220V的没有多大区别。国内带来的电器都能正常使用,德国的电器在国内也能正常使用。
Ⅲ 德国的电压是多少
德国是220V,50Hz。
欧洲各国电压 :
国家名称 电压
希腊 Greece AC 220V,50Hz
荷兰 Netherlands AC 220V,50Hz
比利时 Belgium AC 220V,50Hz
法国 France AC 127V/220V,50Hz
西班牙 Spain AC 220V,50Hz
匈牙利 Hungary AC 220V,50Hz
意大利 Italy AC 127V/220V,50Hz
罗马尼亚 Romania AC 220V,50Hz
瑞士 Switzerland AC 220V,50Hz
奥地利 Austria AC 220V,50Hz
英国 United Kingdom AC 240V,50Hz
丹麦 Denmark AC 220V,50Hz
瑞典 Sweden AC 220V,50Hz
挪威 Norway AC 220V,50Hz
波兰 Poland AC 220V,50Hz
德国 Grmany AC 220V,50Hz
葡萄牙 Portugal AC 220V,50Hz
卢森堡 Luxembourg AC 120V/220V,50Hz
爱尔兰 Ireland AC 220V,50Hz
冰岛 Iceland AC 220V,50Hz
芬兰 Finland AC 220V,50Hz
保加利亚 Bulgaria AC 220V,50Hz
Ⅳ 电是从哪来的
发电即利用发电动力装置将水能、化石燃料(煤炭、石油、天然气等)的热能、核能以及太阳能、风能、地热能、海洋能等转换为电能。20世纪末发电多用化石燃料,但化石燃料的资源不多,日渐枯竭,人类已渐渐较多的使用可再生能源(水能、太阳能、风能、地热能、海洋能等)来发电。
1、水力发电
水力发电的基本原理是利用水位落差 ,配合水轮发电机产生电力,也就是利用水的位能转为水轮的机械能,再以机械能推动发电机,而得到电力。科学家们以此水位落差的天然条件,有效的利用流力工程及机械物理等,精心搭配以达到最高的发电量,供人们使用廉价又无污染的电力。
2、火力发电
火力发电指利用可燃物(中国多为煤)燃烧时产生的热能,通过发电动力装置转换成电能的一种发电方式。
3、核能发电
核能发电的核心装置是核反应堆。核反应堆按引起裂变的中子能量分为热中子反应堆和快中子反应堆。
快中子是指裂变反应释放的中子。热中子则是快中子慢化后的中子。大量运行的是热中子反应堆,其中需要慢化剂,通过它的原子核与快中子弹性碰撞将快中子慢化成热中子.热中子堆使用的材料主要是天然铀(铀-235含量3%)和稍加浓缩铀(铀-236含量3%左右)。
4、风力发电
把风能转变为电能是风能利用中最基本的一种方式。风力发电机一般有风轮、发电机(包括装置)、调向器(尾翼)、塔架、限速安全机构和储能装置等构件组成。风力发电机的工作原理比较简单,风轮在风力的作用下旋转,它把风的动能转变为风轮轴的机械能。发电机在风轮轴的带动下旋转发电。
5、地热发电
地热发电是利用地下热能发电的,与火力发电类似。
6、人力发电
能产生力的东西皆能发电,像水力和风力似的,人力也能发电。因此产生了手摇和脚踏之类的发电机,将人在运动中产生的能量转换成电能。
与经济关系
电力生产模式的选择及其经济可行性因需求和地区而异。世界各地的经济差异很大,导致住宅销售价格普遍存在,例如冰岛的价格为每千瓦时 5.54 美分,而在一些岛国则为每千瓦时 40 美分。水力发电厂、核电厂、火力发电厂和可再生能源各有优劣,根据当地电力需求和需求波动情况选择。
所有电网都有不同的负载,但每日最低负载是基本负载,通常由连续运行的工厂提供。核能、煤炭、石油、天然气和一些水力发电厂可以提供基本负荷。如果天然气的建井成本低于每兆瓦时 10 美元,则天然气发电比燃煤发电便宜。
热能在工业密度高的地区可能是经济的,因为当地可再生能源无法满足高需求。由于工业通常远离居民区,因此局部污染的影响也被最小化。这些工厂还可以通过增加更多机组或暂时减少某些机组的产量来承受负载和消耗的变化。
核电站可以从单个单元产生大量电力。然而,核灾难引发了人们对核电安全的担忧,核电站的资金成本非常高。水力发电厂位于可以利用落水产生的势能来驱动涡轮机和发电的区域。
由于技术进步和大规模生产,除水电(太阳能、风能、潮汐能等)以外的可再生能源的生产成本有所下降,现在在许多情况下,能源价格与水电一样昂贵或低于化石燃料。世界各地的许多政府提供补贴以抵消任何新电力生产的更高成本,并使安装可再生能源系统在经济上可行。
以上内容参考网络-发电
Ⅳ 电是从哪里来的
物质都是由分子组成,分子是由原子组成,原子中有带负电的电子和带正电荷的质子组成。在正常状况下,一个原子的质子数与电子数量相同,正负平衡,所以对外表现出不带电的现象。但是电子环绕于原子核周围,一经外力即脱离轨道,离开原来的原子儿而侵入其他的原子B,A原子因缺少电子数而带有正电现象,称为阳离子、B原子因增加电子数而呈带负电现象,称为阴离子。
造成不平衡电子分布的原因即是电子受外力而脱离轨道,这个外力包含各种能量(如动能、位能、热能、化学能……等)在日常生活中,任何两个不同材质的物体接触后再分离,即可产生静电。
当两个不同的物体相互接触时就会使得一个物体失去一些电荷如电子转移到另一个物体使其带正电,而另一个体得到一些剩余电子的物体而带负电。若在分离的过程中电荷难以中和,电荷就会积累使物体带上静电。所以物体与其它物体接触后分离就会带上静电。通常在从一个物体上剥离一张塑料薄膜时就是一种典型的“接触分离”起电,在日常生活中脱衣服产生的静电也是“接触分离”起电。
固体、液体甚至气体都会因接触分离而带上静电。这是因为气体也是由分子、原子组成,当空气流动时分子、原子也会发生“接触分离”而起电。
我们都知道摩擦起电而很少听说接触起电。实质上摩擦起电是一种接触又分离的造成正负电荷不平衡的过程。摩擦是一个不断接触与分离的过程。因此摩擦起电实质上是接触分离起电。在日常生活,各类物体都可能由于移动或摩擦而产生静电。
另一种常见的起电是感应起电。当带电物体接近不带电物体时会在不带电的导体的两端分别感应出负电和正电。
其它起电方式有:热电和压电起电、亥姆霍兹层、喷射起电等
Ⅵ 电从哪里来
物质是由原子组成的,原子是由原子核和电子组成的。当导线在磁场中运动时,导线中的金属原子中的电子由于受到磁场力的作用,脱离原子变成自由电子向固定的方向流动就形成了电流。
电子的定向移动形成了电流。
线圈不断运动,电子就不断流动。
自己理解着解释的,不知道能理解不?呵呵
Ⅶ 电从哪儿来
如果有人问你电是从哪里来的,也许你会毫不犹豫地说 “当然是从发电厂来的。”其实,我们家庭中用的电并不是直接由发电厂提供的,电在输送过程中经历了许多“坎坷”!由于发电厂到用户的距离较长,电在输送过程中损耗较大,为了减少电能在输送过程中的损耗,所以要采用高压输电。电从发电厂输出后首先要进入升压变压器,将电压升高到几百千伏甚至更高,到达用电地区时再进入降压变压器,将电压降为220伏才能接入用户。在这个过程中,电与输电线一起翻山越岭、跨江穿河,众多的电业工人为电的输送付出了辛勤的劳动!
我国幅员辽阔、地形复杂、用电户众多且分布分散,所以输电线路非常长。为了减少电能损耗,我国的居民用电电压为220伏,而一些发达国家由于用电户较少且相对集中,再加上许多年前他们的输电技术就已经较为发达,所以这些国家多采用110伏的家庭用电电压。
Ⅷ 在发现磁生电前,人类从哪弄来的电
古代发现
在中国,古人认为电的现象是阴气与阳气相激而生成的,《说文解字》有“电,阴阳激耀也,从雨从申”。《字汇》有“雷从回,电从申。阴阳以回薄而成雷,以申泄而为电”。在古籍论衡(Lun Heng,约公元一世纪,即东汉时期)一书中曾有关于静电的记载,当琥珀或玳瑁经摩擦后,便能吸引轻小物体,也记述了以丝绸摩擦起电的现象,但古代中国对于电并没有太多了解。
西元前600年左右,希腊的哲学家泰利斯(Thales,640-546B.C.)就知道琥珀的摩擦会吸引绒毛或木屑,这种现象称为静电(static electricITy)。而英文中的电(Electricity)在古希腊文的意思就是“琥珀”(amber)。希腊文的静电为(elektron)
近代探索
18世纪时西方开始探索电的种种现象。美国的科学家富兰克林(Benjamin Franklin,1706~1790)认为电是一种没有重量的流体,存在于所有物体中。当物体得到比正常份量多的电就称为带正电;若少于正常份量,就被称为带负电,所谓“放电”就是正电流向负电的过程(人为规定的),这个理论并不完全正确,但是正电、负电两种名称则被保留下来。此时期有关“电”的观念是物质上的主张。
富兰克林做了多次实验,并首次提出了电流的概念,1752年,他在一个风筝实验中,将系上钥匙的风筝用金属线放到云层中,被雨淋湿的金属线将空中的闪电引到手指与钥匙之间,证明了空中的闪电与地面上的电是同一回事。
从物质到电场
在十八世纪电的量性方面开始发展,1767年蒲力斯特里(J.B.Priestley)与1785年库仑(C.A.Coulomb 1736-1806)发现了静态电荷间的作用力与距离成反平方的定律,奠定了静电的基本定律。
在1800年,意大利的伏特(A.Voult)用铜片和锡片浸于食盐水中,并接上导线,制成了第一个电池,他提供首次的连续性的电源,堪称现代电池的元祖。1831年英国的法拉第(M. Faraday)利用磁场效应的变化,展示感应电流的产生。1851年他又提出物理电力线的概念。这是首次强调从电荷转移到电场的概念。
电场与磁场
1865年、苏格兰的马克斯威尔(J. C. Maxwell)提出电磁场理论的数学式,这理论提供了位移电流的观念,磁场的变化能产生电场,而电场的变化能产生磁场。马克斯威尔预测了电磁波辐射的传播存在,而在1887年德国赫兹(H.Hertz)展示出这样的电磁波。结果马克斯威尔将电学与磁学统合成一种理论,同时亦证明光是电磁波的一种。
马克斯威尔电磁理论的发展也针对微观方面的现象做出解释,并指出电荷的分裂性而非连续性的存在,1895年洛伦兹(H.A.Lorentz)假设这些分裂性的电荷是电子(electron),而电子的作用就依马克斯威尔电磁方程式的电磁场来决定。1897年英国汤姆生(J.J.Thomson)证实这些电子的电性是带负电性。而1898年由伟恩(W.Wien)在观察阳极射线的偏转中发现带正电粒子的存在。
从粒子到量子
而人类一直以自然界中存在的粒子与波来描述“电”的世界。到了19世纪,量子学说的出现,使得原本构筑的粒子世界又重新受到考验。海森堡(Werner Heisenberg)所提出的“测不准原理”认为一个粒子的移动速度和位置不能被同时测得;电子不再是可数的颗粒;也不是绕着固定的轨道运行。
一九二三年,德布洛伊(Louis de Broglie)提出当微小粒子运动时,同时具有粒子性和波动性,称为“质—波二重性”,而薛定谔(Erwin Schrodinger)用数学的方法,以函数来描述电子的行为,并且用波动力学模型得到电子在空间存在的机率分布,根据海森堡测不准原理,我们无法准确地测到它的位置,但可以测得在原子核外每一点电子出现的机率。在波耳的氢原子模型中,原子在基态时的电子运动半径,就是在波动力学模型里,电子最大出现机率的位置。
随着科学的演进,人类逐渐理解“电”的物理量所能取得的数值是不连续的,它们所反映的规律是属于统计性的。
电对人类生活的重大影响
电的发现和应用极大的节省了人类的体力劳动和脑力劳动,使人类的力量长上了翅膀,使人类的信息触角不断延伸。电对人类生活的影响有两方面:能量的获取转化和传输,电子信息技术的基础。
这是网上的一位大神说的,我只是个搬运工