导航:首页 > 德国资讯 > 德国gfz到底怎么样

德国gfz到底怎么样

发布时间:2022-05-31 17:39:14

1. 卫星定位的新世纪

进入21世纪,全球定位系统(GPS)在各方面的应用都将加强和发展。本文对GPS走向21世纪时的最新发展情况,特别是当前国际GPS服务(1GS)的产品内容、应用和服务等方面作重点介绍。
一 、GPS连续运行站网和综合服务系统的发展
在全球地基GPS连续运行站(约200个)的基础上所组成的IGS(International GPS Service),是GPS连续运行站网和综合服务系统的范例。它无偿向全球用户提供GPS各种信息,如GPS精密星历、快速星历、预报星历、IGS站坐标及其运动速率、IGS站所接收的GPS信号的相位和伪距数据、地球自转速率等。这些信息在大地测量和地球动力学方面支持了无数的科学项目,包括电离层、气象、参考框架、精密时间传递、高分辨的推算地球自转速率及其变化、地壳运动等。
(1) IGS现在提供的轨道有三类:一是最终(精密)轨道,要在10—12天以后得到它,常用于精密定位;二是快报轨道,要在1天以后得到,它常用于大气的水汽含量、电离层计算等;还有一类是预报轨道。
关于对GPS星钟偏差方面的估计,只有两个IGS分析中心提供。IGS近200个永久连续运行的全球跟踪站中,使用的外部频率标准近70个,其中约30个使用氢钟,约20个使用铯原子钟,约20个使用铷原子钟,其余的使用GPS内部的晶体震荡器。
(2) IGS还提供极移和世界时信息。IGS公布的最终的每日极坐标(x,y),其精度为±0.1mas,快报的相应精度为±0.2mas。GPS作为一种空间大地测量技术,本身并不具备测定世界时(UT)的功能,但由于一方面GPS卫星轨道参数和UT相关,另一方面,也和测定地球自转速率有关,而自转速率又是UT的时间导数,因此IGS仍能给出每天的日长(LOD)值。IGS还能进一步求定章动项和高分辨率的极移(达每2小时1次,而不是1天1次),后者主要源于IGS各观测站观测质量的提高,数据传输迅速和及时,以及数据处理方法的改进,并没有本质的改变,而前者却是技术上的一个跨跃。
(3) IGS提供的一个极为有用和重要的信息是IGS的那些连续运行站(跟踪站)的坐标、相应的框架、历元和站移动速度。前者精度好于1cm,后者精度好于1mm/y。IGS站坐标所采用的坐标参考框架是和IERS互相协调的。1993年末开始使用ITRF91,1994年使用ITRF92,1995年到1996年中期使用ITRF93,1996年中期到1998年4月一直使用ITRF94,1998年3月1日转而采用ITRF96,1999年8月1日开始IGS采用ITRF97。
(4) IGS在测定短期章动方面的新贡献。
GPS技术不能确定UT,而只能确定日长。同样这一原则也适用于章动,即GPS数据不能测定章动的经度和倾角,但能确定这些量的时间变率(对时间的导数)。基于这一原理,用了3年的每天的ψ和ε值的资料,估算短期章动项的章动振幅,并与VLBI结果作了比较。结论认为,就测定章动短周期项而言,GPS方法优于VLBI,而对超过1个月以上的长周期而言,VLBI较优。
由于对GPS技术的IGS作出了如此大的成绩和贡献,因此1999年9月各国的VLBI站和SLR站决定也组织类似于IGS的相应的IVS和IVRS。法国的DORIS和德国的PRARE也正在考虑成立类似模式的国际组织。力求使这类空间大地测量观测系统组织起来,提高效率、提高精度和可靠性。
就地区性的GPS连续运行站网和综合服务系统而言,发达国家也已做了很多这方面工作,取得了进展。在美国布设了GPS“连续运行参考站”(CORS)系统。它由美国大地测量局(NGS)负责,该系统的当前目标是(1)使美国各地的全部用户能更方便的利用它来达到厘米级水平的定位和导航;(2)促进用户利用CORS来发展GIS;(3)监测地壳形变;④求定大气中水汽分布;⑤监测电离层中自由电子浓度和分布。
截止1999年9月CORS已有156个站,而美国NGS宣布为了强化CORS系统,以每个月增加3个站的速度来改善该系统的空间覆盖率。此外,CORS的数据和信息包括接收的伪距和相位信息、站坐标、站移动速率矢量、GPS星气、站四周的气象数据等,用户可以通过信息网络,如Internet很容易下载而得到。
英国建立的“连续运行GPS参考站”(COGPS)系统的功能和目标类似于上述CORS,但结合英国本土情况还多了一项监测英伦三岛周围的海平面相对和绝对变化的任务。英国的COGPS由测绘局、环保局、气象局、农业部、海洋实验室共同负责。已有近30个GPS连续运行站,今后的打算是扩建COGPS系统和建立一个中心,其主要任务是传输、提供、归档、处理和分析GPS各站数据。
日本已建成全国近1200个GPS连续运行站网的综合服务系统。它在以监测地壳形变、预报地震为主功能的基础上,结合气象和大气部门开展GPS大气学的服务。
二、 GPS应用于电离层监测
GPS在监测电离层方面的应用,也是GPS空间气象学的开端。太空中充满了等离子体、宇宙线粒子、各种波段的电磁辐射,由于太阳常在1秒钟内抛出百万吨量级的带电物,电离层由此而受到强烈干扰,这是空间气象学研究的一个对象。通过测定电离层对GPS讯号的延迟来确定在单位体积内总自由电子含量(TEC),以建立全球的电离层数字模型。
GPS卫星发射L1和L2。两个载波。由这两个载波可以削弱电离层对GPS定位的影响,或者说可以求定电离层折射。因为这一折射和载波频率有关。
当人们建立地区或全球电离层数字模型时,总是作简化的假定,所有自由电子含量都表示在一个单层面上,该面离地面高为H。这样的话,电子含量正可以用在接收机和卫星连线与此单层面交点(刺入点)处的电子含量Es表示,它可以视为E与刺入点处天顶距Z'的函数Ecos Z'=Es。可以将在球面上的电子浓度Es加以模型化,例如写成经纬度的球谐函数等,这方面有很多专家提出了各种模型。IGS提出了一种电离层地图的交换格式(10nosphere Map Exchange Format,IONEX—Format),它的作用是使基于各种理论和技术所获得的电离层地图能在统一规格的基础上进行综合和比较。电离层模型有各不相同的理论基础,而取得的数据来源的技术也不同,数据覆盖面也不完整,所以只能将IGS和全球各种TEC的图和GPS卫星讯号的差分码偏差(differential code biases—DCBS)用IONEX形式向全世界用户提供,下一步将通过比较,逐步联合起来。
三、 GPS应用于对流层监测
在GPS应用中,早期主要是轨道误差影响定位精度,而且早期的GPS基线相对来说比较短,高差不大,因此对对流层的研究没有给予很大的重视。直到由于GPS轨道精度大大提高后,对流层折射已成为限制GPS定位精度提高的一个重要障碍。假设一个高程基本为零的地区,接收机所接收的GPS讯号从天顶方向传来的话,其延迟可以达到2.2—2.6m这一量级,而2小时内这一延迟变化可达10cm不是少见的(所以IGS分析中心提供的对流层参数是用2小时间隔一次)。也由于这个实际情况,对流层折射要顾及其随机过程的变化来加以模型化。
在GPS应用于对流层研究中,IGS的快速轨道和预报轨道信息对于天气预报会起重大作用。此外,IGS通过德国GFZ的“IGS对流层比较和协调中心”提供的每2小时的对流层天顶延迟系列就象是控制点,对于区域性或局部性的对流层研究来说,可以起到对流层延迟绝对值的标定作用。
与地基GPS大气监测不同,星基或空基GPS掩星法测定气象的技术有覆盖面广,垂直分辨好,数据获取速度快的优点。这一技术的原理是将GPS接收机放在某一低轨卫星(LEO)或飞行器的平台上,该GPS接收机一方面起到对该卫星(或飞行器)精确定轨的作用,同时又应用GPS掩星技术起到大气探测器的作用。在1997年进行的GPS/MET研究项目,证实了这个设想是可行的。预定于2000年4月发射的CHAMP卫星要利用GPS掩星法进行全球对流层折射(包括大气可降水分)的测定。
在今后几年中,还有阿根廷的SAC—C,中国台湾的COS—MIC,这些LEO卫星都要用星载GPS来定轨和利用掩星法测大气。
今后利用星载GPS的气象和电子浓度截面数值,结合地面GPS站数据,作成层折图像提供使用。今后3年中GPS/MET项目研究还要进行6次,预计它将在天气预报、空间天气预报、气象监测方面做出巨大贡献。
四 、GPS作为卫星测高仪的应用
多路径效应是GPS定位中的一种噪音,至今仍是高精度GPS定位中一个很不容易解决的“干扰”。过去几年利用大气对GPS信号延迟的噪声发展了GPS大气学,也正在利用GPS定位中的多路径效应发展GPS测高技术,即利用空载GPS作为测高仪进行测高。它是通过利用海面或冰面所反射的GPS信号,求定海面或冰面地形,测定波浪形态,洋流速度和方向。通常卫星测高或空载测高测的是一个点,连续测量结果在反向面上是一个截面,而GPS测高则是测量有一定宽度的带,因此可以测定反射表面的起伏(地形)。据报告,试验时在空载平面安装2台GPS接收机,1台天线向上用于对载体的定位,1台天线向下,用于接收GPS在反射面上的讯号。美国在海上作了测定洋流和波浪的试验。丹麦在格凌兰作了测定冰面地形及其变化的试验。
五 、卫星一卫星追踪技术
卫星对卫星的追踪(SST)技术的实质是高分辨率的测定2颗卫星间的距离变化,一般它分为两类,即高低卫星追踪和低低卫星追踪。前一类是高轨卫星(如对地静止卫星,GPS卫星等)追踪低轨(LEO)卫星或空间飞行器,后一类是处于大体为同一低轨道(LEO)上的2颗卫星之间的追踪,2颗卫星间可以相距数百千米,这两类SST技术都将LEO卫星作为地球重力场的传感器,以卫星间单向或双向的微波测距系统测定卫星间的相对速度及其变率。这一速度的不规则变化所反映的信息中,就包含了地球重力场信息。卫星轨道愈低,这一速度变化受重力场的影响愈明显,所反映重力场的分辨率也愈高。
这两类SST技术中,以高低卫星追踪所获得的信息比较丰富,这是因为:
高轨卫星,特别是有多个高轨卫星(如GPS)能获得低轨卫星处于大部分轨道上所传递的信息;(2)对地面重力场的中波、长波、短波信息都能恢复;(3)不同于低轨卫星,高轨卫星受重力场影响比较小,因此卫星间速度变化能比较好的反映重力场信息,同时高卫星的轨道也比较容易精确的求定。
SST技术的第一次试验是在1975年进行的,高轨卫星是对地静止卫星(GEO)ETS一6,而低轨卫星为NIMBUS—6和APOLLO—SYYUS,但由于观测值的分辨率和精度太低(低于10μm/s),而没有取得很满意的成果,因此NASA放弃了此项研究;一直到1991年,利用GPS卫星作高轨卫星再次进行了试验,用LANDSAT作为低轨卫星,在该卫星平面上装GPS接收机,进行定轨和测定高低卫星间距离及其变率的试验,后来在T/P海洋测高卫星上也作过类似试验,也由于测定距离及其变率的分辨率和精度不高,而没有令人满意的结果;这次欧空局(ESA)在德国(GFZ)主持下所发射的CHAMP,GRACE和GOCE3颗卫星,在今后10年中将专门进行SST和卫星重力梯度测量(SGG)的试验,以改善对地球重力场的认识。
IGS认为持续地支持低轨卫星(LEO)是它的一项重要任务方面,因此专门建立了LEO工作组。LEO工作组制定了工作计划,并提出了一些建议:①建立IGS为追踪LEO的相应标准化地面站网,以满足LEO的要求;②IGS以短于24小时速率,对这些地面站网的数据进行传输和处理,提供LEO所需要的数据和产品;③为地面站网的GPS 1 Hz采样率数据建立相应的GPS数据交换格式;④了解调查IGS精密轨道对LEO平台上GPS数据采集的作用和意义。
1994年GPS就全面进入正式运行,该系统由21颗卫星组成,分别沿6个轨道平面运行,还有3颗卫星一直处于热备份状态,总计24颗.但在轨道上运行的GPS卫星总数实际上是变动的,在1998年就有27颗GPS卫星在轨道上运行.若从与赤道面55°倾角算第一个轨道面,则其他5个轨道面均以此为基础,彼此各以60°角度相交.
(2)关于对GPS星钟偏差方面的估计,只有两个IGS分析中心提供.IGS近200个永久连续运行的全球跟踪站中,使用的外部频率标准近70个,其中约30个使用氢钟,约20个使用铯原子钟,约20个使用铷原子钟,其余的使用GPS内部的晶体震荡器.
(3)IGS还提供极移和世界时信息(参见表1).IGS公布的最终的每日极坐标(x,y),其精度为±0. 1m a s,快报的相应精度为±0. 2m a s.GPS作为一种空间大地测量技术,本身并不具备测定世界时(U T)的功能,但由于一方面GPS卫星轨道参数和U T相关,另一方面,也和测定地球自转速率有关,而自转速率又是U T的时间导数,因此IGS仍能给出每天的日长(LOD)值.IGS还能进一步求定章动项和高分辨率的极移(达每2小时1次,而不是1天1次),后者主要源于IGS各观测站观测质量的提高,数据传输迅速和及时,以及数据处理方法的改进,并没有本质的改变,而前者却是技术上的一个跨跃.
(4)IGS提供的一个极为有用和重要的信息是IGS的那些连续运行站(跟踪站)的坐标,相应的框架,历元和站移动速率,前者精度好于1cm,后者精度好于1mm a.IGS站坐标所采用的坐标参考框架是和IER S互相协调的.1993年末开始使用ITR F91,1994年使用ITR F92,1995年到1996年中期使用ITR F93,1996年中期到1998年4月一直使用ITR F94,1998年3月1日转而采用ITR F96,1999年8月1日开始IGS采用1TR F97.
(5)IGS在测定短期章动方面的新贡献.众所周知,地球自转轴在地球表面上的移动称为极移,而它在惯性空间中的运动称为岁差和章动.GPS技术不能确定U T,而只能确定日长.同样这一原则也适用于章动,即GPS数据不能测定章动的经度和倾角,但能确定这些量的时间变率(对时间的导数).基于这一原理,用了3年的每天的W和E值的资料,估算短期章动项的章动振幅,并与VLB I结果作了比较,结论认为,就测定章动短周期项而言,GPS方法优于VLB I,而对超过一个月以上的长周期而言,VLB I较优.
由于对于GPS技术的IGS作出了如此大的成绩和贡献,因此在1999年9月各国的VLB I站和SL R站决定组织类似于IGS的相应的IV S和IL R S.法国的DO R IS和德国的PRA R E也正在考虑成立类似模式的国际组织.力求使这类空间大地测量观测系统组织起来,提高效率,提高精度和可靠性.

2. 国际: 地球科技项目计划

(国际地球物理年、国际岩石圈计划、世界气候研究计划、国际极地观测年……)

·国际地球物理年 (International Geophysical Year)

国际地球物理年,是全球科技界大联合大协作的首次壮举,标志着一个新时代———国际化大规模科学考察时代的开端。从1957 年 7 月 1 日至 1958 年 12 月 31 日,在一年半的时间里,由国际科学联合会理事会 (即现在的国际科学理事会,1998 年 4 月改为现名) 发起并组织,来自 76 个国家的 2 万多名科学家在全球范围内陆地和海洋的 1000 多个观测点对各种地球物理现象进行了广泛的观测和研究,收集了大量的资料和数据。

国际地球物理年也是第二次世界大战后,国际社会开展的第一个国际年。通过国际地球物理年活动,人类获得了一些有关高空物理现象和极地关系的资料。国际地球物理年科学活动的成功,使得北极和南极的科学考察活动进入了正规化、现代化和国际化的阶段。

国际地球物理年的科学研究内容十分广泛,涉及 13 个项目:气象学、地磁和地电、极光、气辉和夜光云、电离层、太阳活动、宇宙线与核子辐射、经纬度测定、冰川学、海洋学、重力测定、地震、火箭与人造卫星探测等。国际地球物理年的活动取得了丰硕的成果,为 1979 年开始的全球大气研究计划的第一次全球试验、1980 年开始的国际气候研究计划中的极地试验、北冰洋实施的重大国际合作考察以及 “上地幔计划”等多个项目奠定了良好的基础。历次国际地球物理年对地球进行多方面观测以获得各种数据资料的活动,不仅对于人们日常生产、生活具有直接的意义,从长远看来,这种科研活动也关系到人类社会的前途和命运。

中国在国际地球观测方面也同样作出了积极的努力。1952年,国际地球物理年专门委员会成立后,为了促进国际地球物理年科学的发展,增进各国科学工作者之间的友好交往,中国决定组织国际地球物理年中国委员会,由竺可桢任主席,赵九章、涂长望任副主席。在国际地球物理年期间,中国按计划进行了风、温度、湿度的地面观测,进行了地磁、宇宙线、电离层等参数的观测和记录,进行了极光、海洋和天文的观测,并综合研究了太阳活动时对近地空间环境的影响和规律。一部分科学家针对当时国际科学界关心的人造卫星、星际航行和空间物理等问题进行了学术探讨。总之,中国在国际地球观测方面作出了自己独特的贡献。

联合国地球物理年的设立,为人类全方位、跨国界、跨学科开展对地球的研究开创了良好的先例。

国际地球物理年大大推动了地球科学的发展,促使许多国家的科学家进行南北极的考察和研究。国际地球物理年推动了联合国对外层空间的关注。国际地球物理年专门委员会通过一项正式决议,要求参与国对于在地球物理年利用人造地球卫星的问题给予注意。在国际地球物理年期间,美国和苏联在探索外层空间方面都作出了积极的响应,在研制人造卫星方面取得了实质性进展。1957 年 10 月 4 日,苏联成功地发射了第一颗人造地球卫星,标志着 “空间时代”的来临; 美国则于 1958 年 1 月 31 日发射了人造地球卫星,还于 1958 年 12 月 18 日发射了第一颗通讯卫星。这些都标志着国际地球物理年胜利地实现了预定的目标,体现了科学合作与竞争促进科技进步的精神。随着 1957 年 10 月人造地球卫星一号的升空而迎来了宇宙探索的开端,这一历史性的事件直接引起了联合国大会对外层空间的关注,并促成了联合国和平利用外层空间委员会这一联合国处理为和平目的利用外层空间问题的主要委员会的建立。

·国际岩石圈计划 (International Lithosphere Program)

国际科学联合会理事会 (ICSU) 的下属组织。英文缩写为ICL。20 世纪 70 年代后期,国际大地测量学和地球物理学联合会(IUGG) 和国际地质科学联合会 (IUGS) 协商提出一项国际岩石圈计划。这是一项旨在 80 年代研究阐明地球岩石圈的性质、动力学、成因和演化,特别是以大陆及大陆边缘部分为重点的国际多学科研究计划。该计划的实施也为增加非可再生的矿产资源和能源,以及开拓它们利用的前景,提供科学资料和先进技术。查明、预测和减轻天然和人类活动诱发的地质、地球物理和地球化学灾害,也是此项计划追求的目的 。1980 年此项计划获 ICSU 批准,并于 1981 年成立了 ICL,开始实施计划。后鉴于此项计划的重要性 ,ICSU 决定将 ICL 作为一个常设机构。委员会的领导机构是执行局,委员会下设 10 个工作组和 7 个协调委员会。至1991 年已有 62 个国家和地区参加国际岩石圈计划的工作。

新的岩石圈研究计划已从1990 年开始执行。新计划包括4 个研究主题,即全球变化的地球科学,当代动力学和深部过程,大陆岩石圈以及大洋岩石圈。每个主题又包含若干前沿的科学问题,由工作组负责实施。协调委员会负责解决地区性科学研究的协调和数据交流,大陆深钻等共同性重大的科学问题。委员会的出版物为 《新闻通讯》。

中国是最早的参加国之一,并于1982 年成立了对应 ICL 的中国全国委员会。

·世界气候研究计划 (World Climate Research Program)

世界气候研究计划 (简称 WCRP) 由世界气象组织与国际科学联合会联合主持,以物理气候系统为主要研究对象。此计划在20 世纪 70 年代开始酝酿,80 年代开始执行,是全球变化研究中开展得较早的一个计划。

WCRP 主要研究地球系统中有关气候的物理过程,涉及整个气候系统。其主要部分是大气、海洋、低温层 (冰雪圈) 和陆地以及这些组成部分之间的相互作用和反馈。它主要关心的是时间尺度为数周到数十年的气候变化。

WCRP 的目标有两个方面: 一是气候的可预报程度; 二是人类活动对气候的影响。

WCRP 研究有三个方向: 为期数周的长期天气预报、全球大气年际变率以及为期数年的热带海洋的年际变率、长期变化。包括两大试验: 热带海洋和全球大气试验和世界海洋环流试验,以作为第二和第三研究方向的中心。1993 年 WCRP 科学委员会又在热带海洋和全球大气计划成果的基础上提出了气候变率和可预报性研究计划,旨在对百年尺度的气候变率进行描述、分析、模拟和预测。

·国际极地观测年 (International Polar Observation Year)

国际极地观测年是全球科学家共同策划、联合开展的大规模极地科学考察活动,被誉为国际南北极科学考察的 “奥林匹克”盛会,自 1882 年至今仅组织了 3 次,分别于 1882 年至 1883 年、1932 年至 1933 年和 1957 年至 1958 年举行。在 1957 年至 1958 年国际地球物理年,开展了有史以来最大规模的极地科学研究,直接促成了 《南极条约》的诞生。由于历史原因,我国未参加前 3次国际极地观测年。

·综合大洋钻探计划 (Integrated Ocean Drilling Program,IODP)

综合大洋钻探计划 2003 年至 2013 年,由 20 多个国家参加,中国 1998 年加入。该计划是以 “地球系统科学”思想为指导,打穿大洋壳,揭示地震机理,查明深海海底的深部生物圈和天然气水合物,理解极端气候和快速气候变化的过程,为国际学术界构筑起新世纪地球系统科学研究的平台,同时为深海新资源勘探开发、环境预测和防震减灾等实际目标服务。该计划是在国际深海钻探计划 DSDP (1968 ~1983 年) 和大洋钻探计划 ODP (1985 ~2003 年) 两项工作基础上进行的。

一些能在海冰区和浅海区钻探的钻探平台也将加入 IODP。此外,美国自然科学基金委员会正在考察重新建造一艘类似于 “乔迪斯·决心号”,但功能更完备的新的考察船。IODP 的航次将进入过去 ODP 计划所无法进入的地区,如大陆架及极地海冰覆盖区; 它的钻探深度则由于主管钻探技术的采用而大大提高,深达上千米。IODP 也因此将在古环境、海底资源 (包括气体水合物) 、地震机制、大洋岩石圈、海平面变化以及深部生物圈等领域里发挥重要而独特的作用。

海底以下数千米深部仍然有大量微生物存在,被称为 “深部生物圈”,其总量估计占全球生物量的 1/10 至 1/2 。深部生物圈的研究对于全球的物质循环、环境演变、生命起源与生命本质规律的探索,以及极端生物资源的开发利用均具有重要意义,已经成为当前国际学术界的研究热点和战略前沿。

·国际大陆科学钻探计划 (International Continental Scientific Drilling Program)

1993 年 8 月 30 日至 9 月 1 日,德国地学研究中心 (简称GFZ) 在波斯坦召开了关于科学钻探的国际会议,出席会议的人员共有 250 余人,分别来自 28 个国家。此次会议之后,来自 15个国家的科学家再次相聚在德国 KTB 钻井现场,正式讨论成立国际大陆科学钻探计划 (简称 ICDP) 。1995 年,德国 GFZ 与美国自然科学基金会 (NSF) 签署了合作备忘录,决定成立 ICDP。1995 年经国务院批准,中国加入国际大陆科学钻探计划。1996年 2 月由德国、美国和中国发起成立了 “国际大陆科学钻探计划(ICDP) ”,至今已有近 20 个国家和团体加入该计划。

·2009 国际天文年 (2009 International Year of Astronomy)

为纪念伽利略将望远镜用于天文观测四百周年,国际天文学联合会 (IAU) 提议将 2009 年定为以 “探索我的宇宙 (The Uni-verse,Yours to Discover) ” 为主题的国际天文年。在 2009 年开展纵贯全年,着眼于教育,面向公众,尤其要吸引青少年参与的,国家、区域及全球层面上的各种活动,这将是一次天文学及其对社会、文化贡献的全球性庆典。这项提议得到了联合国教科文组织 (UNESCO) 的支持,并在 2007 年 12 月 20 日由联合国正式宣布 2009 年为国际天文年。

·国际全球环境变化人文因素计划 (International Human Di-mensions of Global Environmental Change Program)

国际全球环境变化人文因素计划 (简称 IHDP) ,是对地球系统进行集成研究的联合体———地球系统科学联盟的 4 大全球环境变化计划之一。全球环境变化的人文因素影响计划是一个跨学科的、非政府的国际科学计划,旨在促进和共同协调研究。IHDP最初由国际社会科学联盟理事会于 1990 年发起,时称 “人文因素计划”。1996 年 2 月,国际科学联盟理事会联同成为项目的共同发起者。

IHDP 结构设置围绕研究、能力建设、网络化 3 大目标进行的,包括科学委员会、核心科学计划、联合科学计划、秘书处、国家委员会 5 大模块。

IHDP 与其他 3 项计划,即国际地圈生物圈计划、世界气候研究计划和生物多样性计划,统称 “地球系统科学联盟”。各计划之间通过可持续性联合计划建立了密切的合作关系。

IHDP 侧重描述、分析和理解,研究全球环境变化背景下,土地利用/土地覆盖变化,全球环境变化的制度因素,人类安全,可持续性生产、消费系统,以及食物和水的问题、全球碳循环等重大问题。

IHDP 计划围绕着 3 个主要 目 标 开 展、实 施———科学 研 究、科研能力建设和国际化的科学网络。IHDP 的研究需要全世界范围内各个学科的科研工作者的共同努力、合作。

人类活动对地球环境的很多方面都产生着巨大的影响。人类的直接活动已经改变了近 50%的陆地表面,这给生物种类、土地结构和气候带来重大的影响。人类直接或间接使用的淡水资源已经超过总量的一半,很多地区的地下水资料也被迅速的耗尽。自从人类进入工业化时代以来,一些重要的温室气体的浓度迅速上升,带来了地球气候潜在的变化。沿海、海岸线的生活环境迅速的改变,世界范围内的渔业生产正在衰竭。

全世界范围内的科学家都在研究这些变化的起因、结果以及可能引起的自然界的响应。显然,也只有依靠全世界的自然科学家 (如生态学家、气候学家、海洋学家等) 和社会科学家 (如经济学家、人类学家、经济学家等) 的共同努力才能更好地理解这一系列的全球环境变化。

全球环境变化人文因素研究主要是研究由人类活动引起的环境变化的起因和结果,以及人类对这些变化的响应。这种研究是跨学科领域的,它需要发达、发展中国家的学者为之共同努力。近几年中,全球环境变化研究已经日益地认识到人类作为地球系统中心的重要性。

国际全球环境变化人文因素计划 (IHDP) 在人类的发展中起着重要的作用。

3. 大陆科学钻探

1.3.1 国外大陆科学钻探概况

大陆地壳远比洋壳古老,隐藏有更多的地球奥秘,大陆还是人类直接居住、获取主要矿产与其他资源以及遭受地质灾害威胁最大的地方,因此人们迫切希望通过大陆科学钻探来更多和更深入地了解大陆。大陆科学钻探始于20世纪70年代,在1996年2月国际大陆科学钻探计划正式成立之前,许多国家就已经开展了大陆科学钻探。

前苏联制定了庞大的科学深钻计划,在一些主要的地震剖面的交点处,布置了20余口7~12km的科学超深井。1970年开始钻进设计深度15000m的科拉超深井,至1986年达到12262m井深,成为当今世界最深的钻井。前苏联共实施了11个科学超深井和深井,除了科拉超深井之外,其他的着名超深井有萨阿特累超深井、乌拉尔超深井、克里沃罗格超深井、第聂伯-顿涅茨克科学钻井、秋明超深井、迪尔劳兹深井等。

德国实施了举世闻名的“联邦德国大陆深钻计划(KTB)”,在华力西缝合带的结晶地块中先后钻了一个4000.1m深井和一个9101m的超深井,目的是研究地壳较深部位的物理、化学状态和过程,了解内陆地壳的结构、成分、动力学及其演变。

美国实施了10多个科学钻探项目,钻孔深度都较浅,最深的只有3997.45m圣安德烈斯断层科学钻探项目,其他已实施的科学钻探项目有索尔顿湖科学钻探项目、伊利火山链科学钻探项目、长谷地热勘探项目、瓦莱斯破火山口科学钻探项目、上地壳项目等。

1982年,法国的科学家提出了100个须通过科学钻探解决的地学问题,从中选定了12个问题,计划实施科学钻探,已完成了3个,其钻孔深度分别为900m、1400m和3500m。

瑞典国家动力委员会在瑞典中部Gravberg地区的锡利扬陨石撞击构造,施工了1口6950m深的科学探井,以寻找非生物成因的石油和天然气。

瑞典、瑞士和英国分别实施了以核废料储埋点勘察为目的的科学钻探,钻孔深度一般为1000~2000m,最深为2500m。加拿大等国均制定了大陆科学钻探计划,开展浅孔科学钻探工作。

日本制定了为期10年超深钻计划,拟在太平洋、菲律宾及亚洲板块结合带上打超深井。目前已施工了一些以火山和地震研究为目标的浅至中深科学钻孔。

1.3.2 我国大陆科学钻探概况

我国从2001年开始实施“中国大陆科学钻探工程”,经历了4年时间,在江苏省东海县坚硬的结晶岩中施工了一口5158m深的连续取心钻井(“科钻一井”),目的是研究大别-苏鲁超高压变质带的折返机制。2005年实施了青海湖科学钻探项目。采用ICDP的GLD800湖泊钻探取样系统,施工了一系列浅钻。该项目的目标是获取高精度的东亚古环境记录,研究区域的气候、生态和构造演变及其与其他区域和全球古气候变化的关系。2006~2007年在大庆实施了“松科1井”项目,施工了深度分别为1810m和1915m的两口取心钻井,以研究白垩纪地球表层系统重大地质事件与温室气候变化。设计深度超过6000m的“松科2井”已于2014年开钻。汶川特大地震发生之后,从2008年10月开始,我国组织实施了旨在研究地震机制和进行地震监测预报的“汶川地震断裂带大陆科学钻探”。该项目计划施工5口科学钻井,钻井深度范围为550~3350m。近期,我国在深部探测计划专项的范围内,围绕超万米科学钻井的选址工作,施工了6~7口深度2000~3000m的小直径科学钻孔。

1.3.3 国际大陆科学钻探计划(ICDP)

为了协调世界范围内的大陆科学钻探活动,减轻各国在实施该项活动时的成本和风险,实现成果共享,最终促进大陆科学钻探在地学研究中的推广应用,1996年2月由德国、美国和中国发起成立了“国际大陆科学钻探计划(ICDP)”,其总部设在位于德国波茨坦的德国地学研究中心(GFZ)。ICDP成立至今已近20年,共有25个成员,包括德国、美国、中国、日本、波兰、加拿大、奥地利、冰岛、挪威、意大利、西班牙、瑞典、法国、以色列、捷克、南非、芬兰、新西兰、瑞士、印度、荷兰、英国、韩国和比利时共24个国家,以及联合国教科文组织(UNESCO)1个团体成员。该计划从启动以来,已资助了数十个科学钻探项目,不断还有新的国家和团体加入或申请加入该计划。我国的“中国大别-苏鲁超高压变质带大陆科学钻探项目”、“青海湖科学钻探项目”和“白垩纪松辽盆地大陆科学钻探项目”先后被列为ICDP项目,得到了国际大陆科学钻探计划组织的资助。

4. gfzjty 服务态度特别好

服务态度特别好真的舒心。
工作和生活需要热情和行动,需要努力,需要一种积极主动、自动自发的精神,这就要求我们以积极的态度对待工作对待他人对待生活。有积极的态度才能够担负起责任,才能够团结,才能够开拓创新,才能够应对各种复杂的问题。
聪明的资质、内在的干劲、勤奋的工作态度和坚忍不拔的精神,这些都是科学研究成功所需要的其他条件。
懒惰作者:它是一种对待劳动态度的特殊作风,它以难以卷入工作而易于离开工作为其特点。
经验显示,成功多因于赤忱,而少出于能力,胜利者就是把自己身体和灵魂都献给工作的人。
有一类卑微的工作是用坚苦卓绝的精神忍受着的,最低陋的事情往往指向最崇高的目标。
只靠信念虽然可以做出奇迹,但这只是表面,意志,不错,意志越坚强,工作越能完成。
我对青年的劝告只用三句话就可概括,那就是,认真工作,更认真地工作,工作到底。
世上并没有用来 鼓励工作努力的赏赐,所有的赏赐都只是被用来奖励工作成果的。
最好不要在夕阳西下的时候去幻想什么,而要在旭日初升的时候即投入工作。
自己动手,自己动脚,用自己的眼睛观察——这是我们实验工作的最高原则。
除非一个人有大量的工作要做,否则他不可能从懒散、空闲中得到乐趣。
对等工作的严肃态度,高度的正直,形成了自由和秩序之间的平衡。
神圣的工作在每个人的日常事务里,理想的前途在于一点一滴做起。
人类一生的工作,精巧还是粗劣,都由他每个习惯所养成。

5. 大陆科学钻探

1.2.3.1 国外大陆科学钻探

大陆地壳远比洋壳古老,隐藏有更多的地球奥秘,大陆还是人类直接居住、获取主要矿产与其他资源以及遭受地质灾害威胁最大的地方,因此人们迫切希望通过大陆科学钻探来更多和更深入地了解大陆。大陆科学钻探始于20世纪70年代,在1996年2月国际大陆科学钻探计划正式成立之前,许多国家就已经开展了大陆科学钻探。

前苏联制定了庞大的科学深钻计划,在一些主要的地震剖面的交点处,布置了20余口7~12km的科学超深井。1970年开始钻进设计深度15000m的科拉超深井,至1986年达到12262m井深,成为当今世界最深的钻井。前苏联共实施了11个科学超深井和深井,除了科拉超深井之外,其他的着名超深井有萨阿特累超深井、乌拉尔超深井、克里沃罗格超深井、第聂伯-顿涅茨克科学钻井、秋明超深井、迪尔劳兹深井等。

德国实施了举世闻名的“联邦德国大陆深钻计划(KTB)”,在华力西缝合带的结晶地块中先后钻了一个4000.1m深井和一个9101m的超深井,目的是研究地壳较深部位的物理、化学状态和过程,了解内陆地壳的结构、成分、动力学及其演变。

美国实施了10多个科学钻探项目,钻孔深度都较浅,最深的只有3997.45m圣安德烈斯断层科学钻探项目,其他已实施的科学钻探项目有索尔顿湖科学钻探项目、伊利火山链科学钻探项目、长谷地热勘探项目、瓦莱斯破火山口科学钻探项目、上地壳项目等。

1982年,法国的科学家提出了100个须通过科学钻探解决的地学问题,从中选定了12个问题,计划实施科学钻探,已完成了3个,其钻孔深度分别为900m、1400m和3500m。

瑞典国家动力委员会在瑞典中部Gravberg地区的锡利扬陨石撞击构造,施工了一口6950m深的科学探井,以寻找非生物成因的石油和天然气。

瑞典、瑞士和英国分别实施了以核废料储埋点勘察为目的的科学钻探,钻孔深度一般为1000~2000m,最深为2500m。加拿大等国均制定了大陆科学钻探计划,开展浅孔科学钻探工作。

日本制定了为期10年超深钻计划,拟在太平洋、菲律宾及亚洲板块结合带上打超深井。目前已施工了一些以火山和地震研究为目标的浅至中深科学钻孔。

1.2.3.2 我国大陆科学钻探

我国从2001年开始实施“中国大陆科学钻探工程”,经历了4年时间,在江苏省东海县坚硬的结晶岩中施工了一口5158m深的连续取心钻井(“科钻一井”),目的是研究大别

-苏鲁超高压变质带的折返机制。2005年实施了青海湖科学钻探项目。采用ICDP的GLD800湖泊钻探取样系统,施工了一系列浅钻。该项目的目标是获取高精度的东亚古环境记录,研究区域的气候、生态和构造演变及其与其他区域和全球古气候变化的关系。汶川特大地震发生之后,从2008年10月开始,我国组织实施了旨在研究地震机制和进行地震监测预报的“汶川地震断裂带大陆科学钻探”。该项目计划施工5口科学钻井,钻井深度范围为550~3350m。近期,我国在深部探测计划专项的范围内,围绕超万米科学钻井的选址工作,施工了6~7口深度2000~3000m的小直径科学钻孔。

松辽盆地大陆科学钻探计划,由布置在大庆地区周边的松科1井(分南孔和北孔实施)和松科2井(分东孔和西孔实施)组成(图1.6),“2井4孔”分别对白垩系不同层段进行取心钻进,最终连接各井岩心构造松辽盆地白垩系完整的地质综合剖面。2009年,在国家“973”计划和大庆石油管理局资助完成的松科1井成果基础上,中国地质大学(北京)王成善教授牵头组织的“松辽盆地大陆科学钻探”项目申报,获国际大陆科学钻探计划(ICDP)批准。2012年,由国土资源部批准立项、地质矿产调查评价财政专项资助、中国地质调查局组织、中国地质调查局勘探技术研究所承担的“松辽盆地深部资源与环境钻探工程示范”项目启动,实施松辽盆地科学钻探计划的主体工程——松科2井(东井)(以下简称松科2井)。

图1.6 松辽盆地“2井4孔”在东西向大剖面上的投影

2006~2007年在大庆实施了“松科1井”项目,施工了深度分别为1810m和1915m的两口取心钻井,以研究白垩纪地球表层系统重大地质事件与温室气候变化。设计深度6400m的“松科2井”于2014年4月13日开钻。松辽盆地国际大陆科学钻探工程的总体目标是:通过科学钻探工程,实现“2井4孔、万米连续取心”,填补完整的、连续的白垩纪陆相沉积记录世界空白,为研究距今1.4亿年至6500万年间地球温室气候和环境变化奠定坚实研究基础,建立起为建设“百年大庆”和基础地质服务的“金柱子”。同时,通过获取松辽盆地深达6400m的原位、连续地球物理参数,为松辽盆地及其相关类似盆地的地球物理勘探提供科学“标尺”。通过该项目的实施,在大陆深部科学钻探关键技术研究方面,全面提升我国深部科学钻探技术水平,最终形成具有我国自主知识产权的科学钻探技术和方法体系,为我国万米超深井科学钻探提供技术储备;使我国深部大陆科学钻探技术研发水平达到国际先进水平,为我国重大地球科学新发现和矿产资源储量快速增加提供技术保障。

1.2.3.3 国际大陆科学钻探计划(ICDP)

为了协调世界范围内的大陆科学钻探活动,减轻各国在实施该项活动时的成本和风险,实现成果共享,最终促进大陆科学钻探在地学研究中的推广应用,1996年2月由德国、美国和中国发起成立了“国际大陆科学钻探计划(ICDP)”,其总部设在位于德国波茨坦的德国地学研究中心(GFZ)。ICDP成立至今已满20年,共有25个成员,包括德国、美国、中国、日本、波兰、加拿大、奥地利、冰岛、挪威、意大利、西班牙、瑞典、法国、以色列、捷克、南非、芬兰、新西兰、瑞士、印度、荷兰、英国、韩国和比利时共24个国家,以及联合国教科文组织(UNESCO)1个团体成员。该计划从启动以来,已资助了数十个科学钻探项目,不断还有新的国家和团体加入或申请加入该计划。我国的“中国大别-苏鲁超高压变质带大陆科学钻探项目”、“青海湖科学钻探项目”和“白垩纪松辽盆地大陆科学钻探项目”先后被列为ICDP项目,得到了国际大陆科学钻探计划组织的资助。

6. 德国亥姆霍兹联合会的研究中心

亥姆霍兹共包括18个国家级的研究中心,有31,745多名科技人员利用最现代化的科学设备,特别是大型仪器和装置,从事从天体物理学(Astrophysics)、生物学(Biology)到细胞学(Cell Research)各方面的研究。这些研究设施同时也向全世界的学者开放。作为代表国家的科研人员,亥姆霍兹的科学家们非常明确自身的使命:为解决社会发展所面临的重大问题贡献自己的一份微薄之力。 阿尔弗里德·瓦格纳极地与海洋研究所(AWI) 阿尔弗里德·韦格纳研究所的研究人员主要从事极地、海洋与气候方面的研究。他们希望揭示由于自然原因和人类活动所引起的地球环境系统的变化。 德国电子同步加速器(DESY) DESY是世界领先的加速器研究中心之一。DESY开发、建造和运作大型的加速器设施,用以物质结构方面的研究。DESY把成像科学和粒子物理学紧密结合,这在欧洲是独一无二的。 德国癌症研究中心(DKFZ) 位于海德堡的德国癌症研究中心致力于对癌症产生的原因及其治疗方法的改进进行分析与研究。 德国航空航天中心(DLR) 总部位于科隆的德国航空航天中心是德国在航空航天领域进行研究与技术研发的国家级研究中心。同时,DLR也在能源和交通运输等研究领域处于领先地位。 德国神经退行疾病研究中心(DZNE) 自2009年4月30日起,德国神经退行疾病研究中心成为亥姆霍兹联合会新的正式成员单位。该中心主要研究神经退行疾病,比如帕金森症和痴呆症的新预防措施和治疗方案。 于利希研究中心(FZJ) 于利希研究中心的主要研究领域集中在如下五个方面:物质结构、能源、信息、生命和环境。 亥姆霍兹重离子研究中心(GSI) 位于达姆施塔特的GSI利用现代加速器装置开展物理学基础研究,同时,它也从事生物物理和辐射医学的研究。 亥姆霍兹基尔海洋研究中心(GEOMAR) 该中心的研究包括从海底地质学到海洋气候学的所有现代海洋科学有关方向的跨学科研究。 亥姆霍兹柏林材料与能源研究中心(HZB) 亥姆霍兹柏林材料与能源研究中心(HZB,前身为HMI)主要对新材料和复杂工程材料进行研究。其研究中专注于材料的技术特性和微观结构之间的关系。太阳能研究,特别是新型太阳能电池材料的开发,是该中心的另一个核心研究领域。 亥姆霍兹德累斯顿罗森多夫研究中心(HZDR) 在强场环境和超微尺度下,物质是如何运动的?恶性肿瘤如何在其早期发现并进行有效治疗?如何保护人类和环境远离技术进步所带来的负面风险?亥姆霍兹德累斯顿罗森多夫研究中心的科研人员的工作就是为了回答上述问题。 亥姆霍兹感染研究中心(HZI) 位于布伦瑞克的亥姆霍兹感染研究中心主要对传染病及其预防与治疗进行研究。 亥姆霍兹环境研究中心(UFZ) UFZ的主要研究对象是人口密集、环境受到破坏的地区人类与自然环境之间的相互关系。UFZ所提观点和方法的主要目的是为了保护人类后代生存所需的自然根基。 亥姆霍兹吉斯达赫特材料与海洋研究中心(HZG) 未来我们如何获取能源?我们如何应对气候变化带来的威胁?医学可以如何帮助我们应对人口变化带来的影响?亥姆霍兹吉斯达赫特材料与海洋研究中心的科研人员从事的研究将为这些问题提供答案。 亥姆霍兹慕尼黑研究中心—德国环境卫生研究中心(HMGU) 位于诺伊尔贝格的亥姆霍兹慕尼黑研究中心主要从环境因素与遗传素质的交互作用的角度对复杂生命系统进行研究。 亥姆霍兹波茨坦研究中心—德国地学研究中心(GFZ) 亥姆霍兹波茨坦研究中心主要从事如下方面的研究:测地学、地球物理学、地质学和矿物学以及地球化学。 卡尔斯鲁厄理工学院(KIT) 卡尔斯鲁厄理工学院(KIT)由亥姆霍兹联合会的成员单位卡尔斯鲁厄研究中心与卡尔斯鲁厄大学合并而成。根据一项关于KIT合并的议案,巴登符登堡州议会已经一致同意合并与2009年10月1日起正式生效。合并将有助于提高学院的国际科研竞争力,同时促进其在自然科学和工程技术领域的教学。 马克斯·德尔布吕克分子医学中心(MDC) 马克斯·德尔布吕克分子医学中心位于柏林布赫,它将微生物学方面的基础研究与临床研究相结合,以此开发诊断和治疗严重疾病的新方法。 马克斯-普朗克等离子体物理研究所(IPP) 位于伽兴的IPP主要专注于核聚变方面的研究,其研究目标是在地球上模拟并力争实现太阳释放能量的方式。

7. igs的一般性介绍

资料中心分工作资料中心、区域资料中心和全球资料中心三个层次。
工作资料中心:负责收集若干个GPS跟踪站的观测资料,包括通过遥控方式收集一些遥远的无人值守的跟踪站的资料,并对观测的数量、观测的卫星数、观测的起始时刻和结束时刻等指标进行检验。将接收到的原始的接收机格式转换为标准的RINEX格式。最后将合格的观测资料传送给区域资料中心。
区域资料中心:负责收集规定区域内的GPS观测资料,然后传送给全球资料中心。进行局部区域研究工作的用户可从区域资料中心获取自己所需的资料。
全球资料中心:负责收集全球各GPS跟踪站的观测资料以及分析中心所产生的GPS产品。IGS的分析中心可从全球资料中心获取所需的全球观测资料,还可获取自己所需的IGS产品。IGS有三个全球资料中心,以增强整个系统的可靠性,减少用户数据传输的路径长度。 分析中心从全球资料中心获取全球的观测资料,独立地进行计算以生成GPS卫星星历、地球自转参数、卫星钟差、跟踪站的站坐标、站坐标的变率以及接收机钟差等IGS产品。IGS共有7个分析中心,它们是:
CODE:位于瑞士伯尔尼大学的欧洲定轨中心;
NRCan:加拿大自然资源部的大地资源部;
GFZ:德国地球科学研究所;
ESA:欧洲空间工作中心;
NGS:位于马里兰州的美国国家大地测量局;
JPL:位于美国加州的喷气推进实验室;
SIO:位于美国加州的斯科利普斯海洋研究所。 中央局(Central Bureau)负责协调整个系统的工作。此外,中央局还设有一个信息系统(CBIS),用户也可从CBIS获取所需的资料。管理委员会(International Governing Board)负责监督管理IGS的各项工作,确定IGS的发展方向。

8. 有谁知道2012年12月21日世界末日的传说

关于2012年12月的一些材料整理
1. 水晶头骨之迷中讲到2012年12月21日太阳下山之后,世界变化,只有非洲和中国西部地区部分人存活
2.科学预测2012年地球磁极颠倒,前几次分别导致了冰川时代和大洪水等事件
3.俄罗斯人预测2009年世界大战爆发,核危机
原子弹爆发
4.一个学龄前班的孩子突然说起古maya语,大概意思是说要净化地球, 时间是2012年
5.藏僧预言:2012年全球爆发核战神将显现干预
6.2012年,太阳磁极也会颠倒
7.星相上,2012年将出现大十字,土木相冲,日月相冲,这代表流血和死亡,上次十字发生在伊拉克战争
德国科研中心所属的赫尔曼-冯-黑尔姆霍尔茨联合会(GFZ German Research Center )一直致力于地球磁场的研究,该研究机构的地球物理学家曼德拉表示:“南大西洋的地球磁场已经出现了这些变化,该地区的磁场与地球其他地区相比较弱,仅为一般磁场的三分之一”,甚至在我们发现新的磁场变化以前,南大西洋的磁场已经出现了相当反常的现象,目前那里已经是地球磁场最薄弱的地区,这意味着地球的磁场保护网在该地区已经出现了凹陷。丹麦哥本哈根大学(University of Copenhagen )的地球物理学家奥尔森(Nils Olsen)与曼德拉合作,二人共同确立了一个地核流体的模型,该模型计算出的结果与卫星检测到的地球磁场变化结果一致。
由于地球磁场的弱化已经使南大西洋区域磁场出现反常,并将严重影响卫星等航天器的运行。失去了地球磁场的保护,来自太阳的辐射风暴将会干扰卫星上的电子设备。曼德拉解释称:“对于卫星来说,这是个极为严峻的挑战。太阳的辐射风暴和一些高能粒子将会使卫星的信号受到影响,并与地面失去联系。”太阳风和其他来自太阳的辐射正在频繁地对地球进行轰炸,磁场在遭到这些袭击后为地球形成了气泡保护膜,但是这种强有力的保护也并非密不透风。2006年发生的一次巨大的太阳辐射风暴使一些卫星出现了短暂的失灵。国际空间站的宇航员们也不得不进入保护区,避免暴露在核辐射之下。在过去的150年里,地球的磁场已经减弱了近10%。目前曼德拉和奥尔森正根据新的观测数据继续对模型进行修正,希望能对其进行完善,以便能精确的预测将来地球磁场的变化。
地球的磁场到底有多大呢?它向太空绵延58000公里,保护着我们的星球。地核能够导电,它好像一个巨大的电磁铁,地球磁场就是它在旋转过程中产生的。这些磁场形成了一个泪珠形状的气泡保护在地球表面,从而对地球上的生物形成保护膜,避免它们受到来自太阳高能的辐射。在地球漫长的历史中曾出现多次磁性逆转(magnetic reversal)的现象,最近一次发生在78万年以前。当地球南北磁性逆转后,新的磁极需要经过一段时间后才能重新确立和恢复。科学家证实,下一次磁性逆转即将发生。
一项最新的研究表明,地球总磁场的弱化将会持续数百甚至上千年,直到最后磁场完全消失殆尽,但地球磁场在几个月的微小而频繁的变化都会使卫星失去保护,而这是科学家无法解决的问题。用过去9年卫星数据设立的模型可以获悉,地核内的流体运动改变地球的外围磁场的过程。这是科学家们首次发现地球磁场仅在数月内就有可能发生如此巨大的变化。
了解历史的朋友可能都知道 消失的玛雅文明吧..玛雅人在一瞬间全部消失..谁也不知道他们去了哪里.至今,这仍是一个密团.但是.玛雅人留给我们太多的问题了...他们的预言百分之99都变成了现实..他们预测到了汽车,飞机的生产日期.有些亲可能会问.他们怎么会知道以后有一种东西叫做汽车..这也正是奇怪的地方.在埃及.一些玛雅文明研究者.在他们生活的地方和一些石头上发现了这些.他们预测了希特勒出生和死亡的日期..完全一样....
人类历史上的3次大浩劫...其中一次就出现的玛雅人身上..即使他们预测到了也改变不了.....那一次..就是上面我所说的 消失的玛雅文明.
依照玛雅历法,地球由始到终分为五个太阳纪,分别代表五次浩劫,其中四个浩劫已经过去
当第五个太阳纪来临,太阳会消失,大地剧烈摇晃,灾难四起,地球会彻底毁灭,按照马雅历法是三一一三年,换算为西历便是二○一二年十二月二十二日。
虽然很多民族都有末日预言,但为何玛雅人所说的末日预言,会受到人们的重视,原因是玛雅历法的计算,非常准确,从玛雅人的历法得知,他们早已知道地球公转时间,是三百六十五日又六小时又二十四分二十秒,误差非常之少。另外对于其他星体的运行时间,在计算上亦非常准确,对于数学上“○”的单位数字,早在三千年前,玛雅人已经使用
而且他们所绘制的航海图.比现在任何一个都要精确...
玛雅人说2012年12月21日的黑夜降临以后,12月22日的黎明永远不会到来...
而他们预测世界末日的毁灭方式是...人类自杀...剩下的人自相残杀....美国航天局和世界上一些着名的语言家都证实了玛雅的预言..
当然...这些并不绝对....只是有一点...玛雅人所说的2012年...地球将会发生重大的改变...这是肯定的...
接下来的更加KB:::
人类经过5次文明(我也不太相信)
五次文明是这样的:
一。根达亚文明,(超能力文明)1米左右,男人有第三只眼,翡翠色,功能各有不同。有预测的,有杀伤力的等等。。。女人没有第三只眼,所女人害怕男人。但是女人的子宫有能神的能力,女人怀孕前会与天上要投生的神联系,谈好了,女人才会要孩子。此文明毁于大陆沉没。
二。米索不达亚文明(饮食文明,注意,不是美索不达米亚)这个文明是上个文明的逃亡者的延续。但是人们把以前的事忘却了,超能力也惭惭消失了。男的第三只眼开始消失。他们对饮食特别爱好,发展出各色各样的专家。这次文明在南极大陆,毁于地球磁极转换。
三。穆里亚文明(生物能文明)上个文明的逃亡者的延续,他们的先祖开始注意到植物在发芽时产生的能量,这个能量非常巨大,经过一个世纪的改良发明了利用植物能的机戒,这个机器可以放大能量,该文明毁于大陆沉没。
四。亚特兰缔斯文明(光的文明)继承上个文明,这里用继承,不用延续是因为,亚特兰缔斯来自猎户座的殖民者。他们拥有光的能力。
早在穆文明时期亚特兰就建立了。后来这两个文明还打核战争。
五。我们存在的文明 (情感的文明)会使用情感,于2012年12月冬至灭绝
展望新时代

9. 泥页岩气

泥页岩气是一种非常规天然气资源,是常规油气能源的重要战略接替。近年来,美国泥页岩气勘探开发取得了重要突破,产量快速增加,引起了世界各国的广泛关注。

2011年4月5日,美国能源信息署(EIA)公布了其对全球泥页岩气资源的初步评估结果。结果显示,全球14个地理区域(美国除外)、48个泥页岩气盆地、70个泥页岩气储层、32个国家的泥页岩气技术可采资源量为163×1012m3,加上美国本土的24×1012m3,全球总的泥页岩气技术可采资源量升至187×1012m3。其中,中国的泥页岩气技术可采资源量为36×1012m3,排名世界第一(约占20%),其后依次是美国(约占13%)、阿根廷、墨西哥和南非(表1.1)。

表1.4 美国主要产气泥页岩基本特点

美国泥页岩气主要产于泥盆系、石炭系、侏罗系和白垩系。开发深度范围为152~4115m,其中,生物成因泥页岩气开发深度范围为152~671m,热成因泥页岩气开发深度范围为914~4115m。富有机质泥页岩净厚度范围为6~183m,多数在30~90m之间,成熟度为0.4%~4.0%。有机碳含量变化范围为0.45%~25.0%,其中低热演化泥页岩有机碳含量范围为0.5%~25.0%,中高演化泥页岩有机碳含量为0.45%~14.0%。低演化泥页岩孔隙度为9.0%~14.0%,高演化页岩孔隙度为1.0%~10.0%。泥页岩含气量变化范围为0.4~9.9m3/t,Barnett页岩含气量最高,在8.5~9.9m3/t之间,Lewis含气量最低,在0.4~1.3m3/t之间。在开发过程中,Antrim和New Albany两套低演化泥页岩产一定量的水,其余几套页岩不产水(表1.4)。

泥页岩气井生产周期长,一般30~50年,根据对Barnett的测算,泥页岩气开采周期最长可达到80~100年,且多数不产水,这与煤层气、致密气有显着区别。

泥页岩气的成功开发,也带来了页岩油产量的增长。2008年以来,美国陆续在多套泥页岩层系中产出了页岩油,例如 Monterey页岩、Bakken页岩、Barnett页岩、Woodford页岩、Eagle Ford页岩及Marcellus页岩等,相关理论研究正在展开。

经过多年的探索实践,美国已形成了先进有效的泥页岩气开发相关技术,包括水平井导向钻进、储层压裂改造、微地震监测、CO2驱气及节水减污等技术。在良好的市场和政策条件下,这些先进技术的大规模推广应用降低了开发成本,大幅提高了产量。

在国家政策、天然气价格和技术进步等因素的推动下,泥页岩气已成为美国最重要的非常规天然气资源。美国地质调查局(USGS)完成了大量区域性和基础性泥页岩气资源的调查评价和研究工作,特别是对重点盆地和重点地区开展的泥页岩气资源评价,极大地促进了泥页岩气资源的勘探开发。目前,美国已经掌握了从地层评价、气藏分析、钻完井和生产的系统集成技术,也产生了一批国际领先的专业技术服务公司,如哈里伯顿、斯伦贝谢、贝克休斯等公司。围绕泥页岩气开采,美国已形成一个技术不断创新的新兴产业,并已开始向全球进行技术和装备输出。

近两年,由于美国泥页岩气产量的快速增长,其国内天然气价格并没有受到国际油价大幅度上升的影响,是世界三大天然气消费市场(北美、欧洲、亚太)中价格最低的地区。

(2)加拿大

加拿大是继美国之后,取得页岩气商业开发成功的第二个国家,2007年,位于不列颠哥伦比亚省东北部的区块已开始投入商业开发,其后加大了泥页岩气的研究投入和勘探开发力度。泥页岩气资源主要分布于不列颠哥伦比亚省、艾塔省、萨斯喀彻温省、南安大略地区、魁北克低地以及滨海诸省,其中不列颠哥伦比亚西部地区的白垩系、侏罗系、三叠系和泥盆系的泥页岩气资源最为丰富。

目前,加拿大天然气供应量已占据了北美市场近50%的份额,不列颠哥伦比亚省东北部地区是其天然气主要产区。过去10年中,该省天然气产量的增长主要来自于非常规天然气,即泥页岩气和致密砂岩气。2011年,加拿大国家能源局和不列颠哥伦比亚省能源和矿业厅联合发表的一份报告表明,不列颠哥伦比亚省东北部的霍恩河盆地可能成为北美第三大泥页岩气产区,仅次于美国的Marcellus和Haynesville页岩气藏。虽然霍恩河盆地页岩气资源非常丰富,但加拿大国家能源局局长戴维森表示,目前还不确定现有的经济状况能否允许全面开发,而且也不能确定什么样的开采方式是可以采用的。这也就意味着这里的泥页岩气开发还面临着诸多挑战。

(3)欧洲

“欧洲泥页岩气研究计划”(GASH)于2009年在德国国家地学研究中心(GFZ)启动。此项计划由政府地质调查部门、咨询机构、研究所和高等院校的专家组成工作团队,拟通过6年时间共同推动完成。工作目标是通过收集欧洲各个地区的泥页岩样品、测井试井和地震资料数据,建立欧洲的泥页岩数据库,与美国的含气泥页岩进行对比研究,在此基础上寻找和发现泥页岩气以满足当地和区域的需求。计划的资助方包括挪威国家石油公司(Statoil)、埃克森美孚(Exxon Mobile)、法国天然气苏伊士集团(GDF Suez)、道达尔(Total)、斯伦贝谢(Schlumberger)、Wintershall、Vermillion、Marathon Oil、Repsol和Bayemgas等10家大型油气公司。参与机构主要有德国国家地学研究中心(GFZ)、法国石油研究院(IFP)、荷兰应用科学研究组织(TNO)等3家大型研究机构,英国、德国、荷兰的多所高等院校,以及超过20个国家和地方地质调查局。

欧洲的非常规天然气勘探开发主要集中在波兰、奥地利、瑞典、德国和英国。据预测,欧洲的非常规天然气产量2030年最高可达600×108m3/a,其中波兰的产量最高,其他的则来自瑞典、德国、法国、奥地利和英国等国家。目前,波兰已钻11口泥页岩气探井,预计2014年实现商业化开采,并逐步实现燃气自给,随着技术的进步,开发成本有望大幅度降低。

(4)其他国家和地区

印度主要评估了坎贝、克里希纳戈达瓦里、高韦里和达莫德尔等盆地的泥页岩气资源量,并在西孟加拉邦东部达莫德尔盆地实施了一口泥页岩气探井,在1700m左右地层中发现了泥页岩气,初步估算泥页岩气的分布范围超过12000km2

澳大利亚泥页岩气技术可采资源量约11×1012m3,主要分布在中南部、西部和东部的Cooper,Perth,Amadeus,Georgina和Canning等盆地中,其中在Perth,Cooper,Canning盆地泥页岩气的勘探开发已经取得了一定的进展。

阿根廷积极开展泥页岩气勘探开发。美国能源信息署的一份报告显示,阿根廷泥页岩气技术可采资源量约为21.9×1012m3,居世界第三位,占拉丁美洲泥页岩气储量的1/3。阿根廷在Neuquen地区泥页岩气勘探获得重大进展,该区页岩气可采资源量约为7×1012m3

南非泥页岩气资源主要分布在Karoo盆地南部,目前已开展页岩气勘探开发工作。该地区二叠系的Whitehill地层是泥页岩气有利目地层,Shell公司正在该区进行页岩气勘探开发。

其他国家,如墨西哥、哥伦比亚、委内瑞拉、土耳其、巴基斯坦等国家了开展了不同程度的泥页岩气勘探开发工作。

10. 德国gfz怎么样

GFZ Deutsches GeoForschungsZentrum Helmholtz-Zentrum Potsdam
是德国国家地理研究中心, 国家级科研机构。

阅读全文

与德国gfz到底怎么样相关的资料

热点内容
金华义乌国际商贸城雨伞在哪个区 浏览:776
俄罗斯如何打通飞地立陶宛 浏览:1151
韩国如何应对流感 浏览:934
在德国爱他美白金版卖多少钱 浏览:972
澳大利亚养羊业为什么发达 浏览:1413
如何进入法国高等学府 浏览:1488
巴西龟喂火腿吃什么 浏览:1420
巴西土地面积多少万平方千米 浏览:1280
巴西龟中耳炎初期要用什么药 浏览:1243
国际为什么锌片如此短缺 浏览:1647
巴西是用什么规格的电源 浏览:1470
在中国卖的法国名牌有什么 浏览:1371
在菲律宾投资可用什么样的居留条件 浏览:1283
德国被分裂为哪些国家 浏览:892
澳大利亚跟团签证要什么材料 浏览:1226
德国大鹅节多少钱 浏览:887
去菲律宾过关时会盘问什么 浏览:1212
澳大利亚女王为什么是元首 浏览:1042
有什么免费的韩国小说软件 浏览:770
申请德国学校如何找中介 浏览:677