‘壹’ 按iec规定,低压配电系统按接地制式分为三类,它们各有何特点
基本分为TN,TT,IT,其中TN可以分为TN-C和TN-S
‘贰’ 低压系统接地分为TT. IT .TN怎么理解
35KV、10KV系统普遍采用中性点不接地系统或经大阻抗接地系统(即小电流接地系统)
380V/220V低压配电系统按保护接地的形式不同可分为:IT系统、TT系统和TN系统。
IT系统的电源中性点是对地绝缘的或经高阻抗接地,而用电设备的金属外壳直接接地。即:过去称三相三线制供电系统的保护接地。
TT系统的电源中性点直接接地;用电设备的金属外壳亦直接接地,且与电源中性点的接地无关。即过去的三相四线制供电系统中的保护接地。
TN系统,在变压器或发电机中性点直接接地的380/220V三相四线低压电网中,将正常运行时不带电的用电设备的金属外壳经公共的保护线与电源的中性点直接电气连接。即过去的三相四线制供电系统中的保护接零。
TN系统的电源中性点直接接地,并有中性线引出。按其保护线形式,TN系统又分为:TN-C系统、TN-S系统和TN-C-S系统等三种。
(1)TN-C系统(三相四线制),该系统的中性线(N)和保护线(PE)是合一的,该线又称为保护中性线(PEN)线。它的优点是节省了一条导线,缺点是三相负载不平衡或保护中性线断开时会使所有用电设备的金属外壳都带上危险电压。
(2)TN-S系统就是三相五线制,该系统的N线和PE线是分开的,从变压器起就用五线供电。它的优点是PE线在正常情况下没有电流通过,因此不会对接在PE线上的其他设备产生电磁干扰。
‘叁’ 电气中接地有几种
如下:
1、工作接地。在电力系统中,凡因电气运行所需要的接地,称为工作接地,如电源中性点的直接接地、防雷设备的接地等。
2、保护接地。为保障人身安全并防止间接触电而将正常情况下不带电、事故情况下可能带电的设备的外露可导电部分进行接地。
3、重复接地。将配电系统的零线在规定地点通过人工接地体或自然地体再次与大地连接。
接地的作用:
接地的作用主要是防止人身遭受电击、设备和线路遭受损坏、预防火灾和防止雷击、防止静电损害和保障电力系统正常运行。
接地是为保证电工设备正常工作和人身安全而采取的一种用电安全措施,通过金属导线与接地装置连接来实现,常用的有保护接地、工作接地、防雷接地、屏蔽接地、防静电接地等。接地装置将电工设备和其他生产设备上可能产生的漏电流、静电荷以及雷电电流等引入地下,从而避免人身触电和可能发生的火灾、爆炸等事故。
以上内容参考:网络-接地
‘肆’ 电气中,什么系统是TN-S系统
TN-S系统是中性点接地、采用接零保护,工作接零与保护接零各自独立的低压配电系统。
根据配电系统接地方式的不同,国际上把低压配电系统分为IT、TT和TN三种形式。其中TN系统又分为TN-C、TN-S、TN-C-S三种。
IT系统基本上就是我们所讲的三相三线制和三相四线制中性点不接地系统;TT系统是三相四线制中性点接地系统并采用保护接地的供电系统;TN-C是三相四线制中性点接地系统并采用保护接零的供电系统;TN-S是被称为三相五线制系统;TN-C-S被称为局部三相五线制系统。
‘伍’ 低压配电系统保护接地的形式有哪几种各有何特点
电力系统的接地直接关系到用户的人身和财产安全,以及电气设备和电子设备的正常运行。如何针对实际情况选择合适的接地系统,确保配电系统及电气设备的安全使用,是设计人员面临的首要问题,本文简要分析了不同接地系统的特点及应用场所,仅供参考。 1.接地制式按照配电系统和电气设备的不同接地组合分类。按照IEC60364规定,接地系统一般由两个字母组成,必要时可加后续字母。 第一个字母:表示电源中性点对地的关系 T:直接接地 I:不接地,或通过阻抗与大地相连 第二个字母:表示电气设备外壳与大地的关系 T:独立于电源接地点的直接接地 N:表示直接与电源系统接地点或与该点引出的导体相连 后续字母:表示中性线与保护线之间的关系 C:表示中性线N与保护线PE合二为一(PEN线) S:表示中性线N与保护线PE分开 C-S:表示在电源侧为PEN线,从某一点分开为中性线N和保护线PE低压配电系统有三种形式: ■TN系统 ■TT系统 ■IT系统 2.不同接地系统的组成及特点: ■TN系统的组成及特点 在TN系统中,所有电气设备的外壳接到保护线(PE)上,与配电系统的中性点相连(若无中性点,即变压器二次侧三角形连接或未引出中性点,可将变压器二次侧绕组的一相接地,但该接点不能用作PEN线)。保护线应在每个变电所附近接地,配电系统引入建筑物时,保护线在其入口处接地。为了保证故障时保护线的电位尽量接近地电位,尽可能将保护线与附近的有效接地体相连,如必要,可增加接地点,并使其均匀分布。其特点是故障电流较大,仅与电缆的阻抗大小有关。出现绝缘故障时,需要短路电流保护装置瞬时断开电路。 国际标准IEC60364规定,根据中性线与保护线是否合并的情况,TN系统分为如下三种: □TN-C □TN-S □TN-C-S 注:对电网来说,当铜导线截面积≤10mm2,铝导线截面积≤16mm2时,必须采用TN-S系统,而不允许采用TN-C系统。 下面介绍其组成及特点: 2.1TN-C系统: 本系统中,保护线与中性线合二为一,称为PEN线。 优点: □TN-C方案易于实现,节省了一根导线,且保护电器可节省一极,降低设备的初期投资费用。 □发生接地短路故障时,故障电流大,可采用一过流保护电器瞬时切断电源,保证人员生命和财产安全 缺点: □线路中有单相负荷,或三相负荷不平衡,及电网中有谐波电流时,由于PEN中有电流,电气设备的外壳和线路金属套管间有压降,对敏感性电子设备不利 □PEN线中的电流在有爆炸危险的环境中会引起爆炸 □PEN线断线或相线对地短路时,会呈现相当高的对地故障电压,可能扩大事故范围 □不能使用剩余电流保护装置RCD(由于检测不出漏电流,RCD会拒动),因此绝缘故障时,不能有效地对人身和设备进行保护 2.2TN-S系统 本系统保护线(PE)和中性线(N)分开 优点: □正常时PE线不通过负荷电流,适用于数据处理和精密电子仪器设备,也可用于爆炸危险场合 □民用建筑中,家用电器大都有单独接地触点的插头,采用TN-S系统,既方便,又安全 □如果回路阻抗太高或者电源短路容量较小,需采用剩余电流保护装置RCD对人身安全和设备进行保护,防止火灾危险 缺点: □由于增加了中性线,初期投资较高 □TN-S系统相对地短路时,对地故障电压较高 2.3TN-C-S系统 在系统某一点起,PEN分为保护线和中性线,分开后,中性线(N)对地绝缘(注:PEN线分开后,不能再合并) 优点: □适用于工矿企业供电,前面TN-C系统可满足固定设备的需要,后端TN-S系统可满足对电位敏感的电子设备的需要 □民用建筑中,电源线路采用TN-C,进入建筑物后,采用TN-S系统,可确保TN-S系统的优点 2.4TT系统的组成及其特点: TT系统的变压器或发电机的中性点直接接地,电气设备的所有外壳用保护线连在一起,接在与电源中性点独立的接地点。如下图所示: 优点: □电气设备的外壳与电源的接地无电气联系,适用于对电位敏感的数据处理设备和精密电子设备 □故障时对地故障电压不会蔓延 □接地短路时,由于受电流接地电阻和电气设备接地电阻的限制,短路电流较小,可减小危险 缺点: □短路电流小,发生短路时,短路电流保护装置不会动作,易造成电击事故 □短路保护装置的过电流保护不能提供绝缘故障保护,需采用剩余电流保护器RCD进行人身和设备安全保护 2.5IT系统的组成及特点: IT系统的电源不接地或通过阻抗接地,电气设备的外壳可直接接地或通过保护线接至单独接地体。 优点: □单相接地第一次故障时,故障电流小,可不切断电源,警报设备报警,通过检查线路消除故障,供电连续性较高,适用于大型电厂的厂用电和重要生产线用电 □可采用剩余电流保护器(RCD)进行人身和设备安全保护 缺点:如果消除第一次故障前,又发生第二次故障,如不同相的接地短路,故障电流很大,非常危险,因此对一次故障探测报警设备的要求较高,以便及时消除和减少出现双重故障的可能性,保证IT系统的可靠性。 2.6接地系统中性线保护 以下情况选用4极开关断开中性线: ■TT和TN系统的中性线截面积小于相线 ■终端配电中避免中性线、相线接反 中性线必须有保护和能分断: ■IT系统中进行第二次故障保护的装置,防止中性线第一次故障后引发二次故障 ■在TT和TN-S系统中,中性线的截面积小于相线的截面积 ■所有接地系统中,会产生3次或多次谐波电流的场合(尤其是中性线截面积减少时) 在TN-C系统中,中性线也是保护线不能断开,由于负载电流不平衡和绝缘故障电流,会产生危险的中性点电压偏移。为此,用户必须做好等电位连接和每个区域的接地。 2.7接地系统的选择: 选择接地系统应根据电气装置的特性、运行条件和要求以及维护能力的大小,综合用户和设计安装人员的意见因地制宜地选用。只要符合安装和运行规范要求,三种接地系统是等效的,没有什麽优先级。 选择接地系统的步骤: ■首先,为保证最大的安全性和灵活性,三种接地系统可以应用在同一供电电网中。 如下图所示,不同接地系统的串联连接和并联连接: ■必须遵守当地标准和法规的规定 ■弄清楚用户的要求和现有的维护资源: □运行连续性要求 □是否有维护服务 □是否有火灾危险 3.系统选择及应用 3.1通常按照如下方式选择: □运行连续性要求较高有维护服务的场合:选择IT系统 □运行连续性要求较高无维护服务的场合:无完全满意的选择,可选择TT系统(其跳闸选择性易于实现)或选择TN系统(减少危险) □运行连续性要求不重要并且有维护能力:选择TN-S系统易于快速维修和扩展 □运行连续性要求较低无维护服务的场合:选择TT系统 □有火灾危险的场合:可选择IT系统(有人员维护)或选择TT系统(使用0.5A的剩余电流保护装置) 3.2特殊电网和负载的选择: □对于线路长,泄漏电流大的电网:选择TN-S系统 □有备用电源的电网:选择TT系统 □对大的故障电流比较敏感的负载(电机):选择TT或IT系统 □绝缘等级较差(电炉)或有大型高频滤波的设备(大型计算机):选择TN-S系统 □控制和监测系统:选择TT(通讯设备间可进行等电位连接)或IT系统(运行连续性高)
‘陆’ 接地系统的分类
建筑工程供电系统中的接地系统规介绍
一、建筑工程供电系统
建筑工程供电使用的基本供电系统有三相三线制三相四线制等,但这些名词术语内涵不是十分严格。国际电工委员会(IEC )对此作了统一规定,称为TT 系统、TN 系统、IT 系统。其中TN 系统又分为TN-C 、TN-S 、TN-C-S 系统。下面内容就是对各种供电系统做一个扼要的介绍。
(一)工程供电的基本方式
根据IEC 规定的各种保护方式、术语概念,低压配电系统按接地方式的不同分为三类,即TT 、TN 和IT 系统,分述如下。
(1)TT 方式供电系统
TT 方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT 系统。第一个符号T 表示电力系统中性点直接接地;第二个符号T 表示负载设备外露不与带电体相接的金属导电部分与大地直接联接,而与系统如何接地无关。在TT 系统中负载的所有接地均称为保护接地,如图1所示。这种供电系统的特点如下。
图1
1)当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。
2)当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,困此TT 系统难以推广。
3)TT 系统接地装置耗用钢材多,而且难以回收、费工时、费料。
现在有的建筑单位是采用TT 系统,施工单位借用其电源作临时用电时,应用一条专用保护线,以减少需接地装置钢材用量,如图2所示。
I 表示电源侧没有工作接地,或经过高阻抗接地。每二个字母T 表示负载侧电气设备进行接地保护,如图7所示。
图7
IT 方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好。一般用于不允许停电的场所,或者是要求严格地连续供电的地方,例如电力炼钢、大医院的手术室、地下矿井等处。地下矿井内供电条件比较差,电缆易受潮。运用IT 方式供电系统,即使电源中性点不接地,一旦设备漏电,单相对地漏电流仍小,不会破坏电源电压的平衡,所以比电源中性点接地的系统还安全。
但是,如果用在供电距离很长时,供电线路对大地的分布电容就不能忽视了。从图8可见,在负载发生短路故障或漏电使设备外壳带电时,漏电电流经大地形成架路,保护设备不一定动作,这是危险的。只有在供电距离不太长时才比较安全。这种供电方式在工地上很少见。
图8
(二)供电线路符号小结
1)国际电工委员会(IEC )规定的供电方式符号中,第一个字母表示电力(电源)系统对地关系。T 表示是中性点直接接地;I 表示所有带电部分绝缘。
2)第二个字母表示用电装置外露的可导电部分对地的关系。如T 表示设备外壳接地,它与系统中的其他任何接地点无直接关系;N 表示负载采用接零保护。
3)第三个字母表示工作零线与保护线的组合关系。如C 表示工作零线与保护线是合一的,如TN-C ;S 表示工作零线与保护线是严格分开的,所以PE 线称为专用保护线,如TN-S 。
附:
单相和三相电路的地线和零线怎么选择?
在380V 低压配电网中,按接地方式有三种五类:TT 、TN-C 、TN-S 、TN-C-S 、IT 。 TT 系统:根据《安全技术规范》中,TT 系统指:电源侧配电变压器中性点直接接地,负荷侧设备不带电的金属外壳直接与大地连接,但与电源侧配电变压器中性点没有直接电气连接。
TN 系统:根据《安全技术规范》中,TN-S 、TN-C 、TN-C-S 系统指:电源侧配电变压器中性点直接接地,负荷侧设备不带电的金属外壳与变压器中性点有直接电气连接。这三类系统中区别是:TN-S 零线和保护零线(地线)是分开的。TN-C 零线和保护零线是共用的。 TN-C-S零线和保护零线部分共用,部分分开。
IT 系统是三相三线式接地系统,该系统变压器中性点不接地或经阻抗接地,无中性线N ,只有线电压(380V ),无相电压(220V ),保护接地线PE 各自独立接地。该系统的优点是当一相接地时,不会使外壳带有较大的故障电流,系统可以照常运行。缺点是不能配出中性线N 。因此它是不适用于拥有大量单相设备的智能化大楼的。
备注:在同一供电系统中采用了保护接地,就不能同时采用保护接零,即同一电网中只能采用同一种接地系统。