A. 中国到底有多少导弹呢
导弹??这个意义是在是太广了,给楼主搜集了一下,请看:
中国导弹系列
001 中国“东风3号”地对地导弹 1970年发射成功的中、远程导弹,射程约2500千米。在“东风3号”和“东风4号”的基础上,1980年5月中国又成功发射了“东风5号”战略弹道导弹。该弹最大射程12000千米(射程大于8000千米的称为洲际导弹),核弹头威力400~500万吨TNT当量(相当于产生同样能量所需的黄色烈性炸药重量),命中偏差250米,其精确度相当于用箭射中百米以外的一只蚊虫。
002 中国CY—1型反潜导弹 从水面舰艇发射,能对付隐藏在水下150~300米深,以33节(1节=1.852千米/小时)速度在水下航行的潜艇。它的战斗部是一枚鱼雷,可以发射和接收声波,利用声波制导而导向目标。
003 中国XW—41巡航导弹 中远程导弹,可以从陆地或空中发射,用于攻击大型舰船和地面目标,重量轻、射程远、维护方便。
004 中国KS-1“凯山1号”地对空导弹 用于对付中、高空飞机和导弹。长5.6米,直径400毫米,最大速度1200 米/秒,最大射程42千米,最小射程7千米,最大射高25千米,采用先进雷达制导,可同时追踪、拦截多个飞行目标。
005 中国“红旗2号乙”地对空导弹 1979年开始研制,用于对付中、高空飞机。可全天候、全方位(从各个方向攻击)作战,抗干扰性能好,且有敌我识别能力。弹长10.8米,直径650毫米,最大速度M4.2,作战高度27千米,射程35千米,采用雷达和电视制导技术,单发命中率92%。
006 中国M型地对地战术导弹80年代开始,开发了第一代M—9型和新型M—11型战术导弹。射程大于400千米,命中偏差小于200米,采用惯性制导或利用地形制导,弹头有效杀伤半径约1000米
007 中国“红旗61号”地对空导弹 图为车载机动发射型,1988年定型。整个系统结构紧凑,操作方便。除雷达制导外,还采用了电视跟踪技术,从而提高了导弹的作战适应能力。
008 中国C801反舰导弹1987年设计定型的多用途导弹,可从飞机、舰艇和地面车辆上发射,具有体积小、重量轻、命中精度高、作战威力大等特点,采用主动雷达制导,“发射后不用管”。弹长5.814米,直径360毫米,重815干克,速度M0.9,射程42千米(舰射型)和50千米(空射型)。导弹发射后先爬高、加速,再下降至20米高度处平飞,接近目标时降至5~7米掠海飞行,随后俯冲,在舰船水线附近命中目标,命中率为95%。一枚即可重创或击毁一艘3000吨级驱逐舰。其性能指标部分优于法国“飞鱼”导弹。
009 中国“红旗61型”舰对空导弹 1988年定型。弹长3.99米,直径286毫米,最大射程10千米,最大射高8千米,采用半主动雷达制导,单发命中率可达80%。舰首、舰尾各配一套,可同时攻击不同来向的飞机。
010 中国“海鹰3号”岸对舰导弹 中国继C101超音速反舰导弹之后发展的弹头威力更大,射程更远的岸对舰导弹。弹长9.85米,直径0.76米,飞行速度M2。有效射程可达180千米,采用主动雷达制导,“发射后不用管”。
011 中国C101超音速反舰导弹 1985年发射试验成功,有舰射型及空射型(可装于轰6丁轰炸机上)。弹长6.5米(舰射型)或7.5米(空射型),直径540毫米,飞行速度M2,巡航高度50米,掠海飞行高度5米,有效射程45千米,主动雷达制导。
012 中国“海鹰1号”岸对舰导弹 1974年定型,主要用于对付入侵的大、中型水面舰艇。弹长5.8米,直径760毫米,飞行 速度M0.8,巡航高度100~300米,有效射程85千米,主动雷达制导,“发射后不用管”。以后又改进为“海鹰1号甲”,提高了抗干扰能力,于1987年通过技术鉴定。
013中国“海鹰1号”舰对舰导弹 1983年定型,装备导弹驱逐舰,用于对付水面舰艇。该弹用3联装旋转发射器进行发射,测试时取得4发全中的成绩
014中国“海鹰4号”岸对舰导弹 70年代中期开始研制。弹长7.36 米,直径760毫米,飞行速度M0.9,有效射程135千米,采用主动雷达制导。
015 中国“飞龙2号”舰对舰导弹 飞龙1号”的改进型。1986年公开展示。弹长6米,直径540毫米,飞行速度M0.9,有效射程50千米,主动雷达制导
016 中国“海鹰2号”岸对舰导弹 1967年研制成功,以后又不断改进,发展了多种改进型,其中“海鹰2号乙”弹长7.36米,直径760毫米,飞行速度M0.9,巡航高度30~50米,有效射程95千米,采用主动雷达或红外制导。机动性好,发射及撤离时间短,弹头威力可击沉或重创3000吨级以上的中大型军舰。
017 中国C802反舰导弹比C801导弹长一些、轻一些(弹长6.392米,重715千克),而性能更好一些,射程从42千米增至120千米,也是可空射、舰射和岸射的多用途导弹,岸射型配备4辆发射车,每辆3枚导弹。可以封锁160度以上的扇形海域。
018 中国“飞龙7号”舰对舰导弹 飞龙”系列中的最新发展型。弹长6.6米,直径540毫米,飞行速度M1.4,有效射程30千米。
019 中国“上游1号”舰对舰导弹 1966年底,中国仿制前苏联“冥河”导弹成功,命名“上游1号”,1983年完成改进型“上游1号甲”。与此同时,中国自行研制了“上游2号”,该弹体积小、速度快、抗干扰能力强,1980年试验成功。
020 中国“海鹰2号甲”岸对舰导弹 “海鹰2号”的改进型,用红外制导取代主动雷达制导,提高了抗干扰能力,1982年定型。以后又改进了制导技术,可全方位攻击并可降低飞行高度。
021 中国“霹雷7号”空对空导弹 中国空对空导弹的研制始于50年代末期,现已形成“霹雷”系列。“霹雷7号”是1986年鉴定的中国第二代空对空导弹,装备中国歼—7M歼击机,有效射程0.5~14千米,采用红外制导技术,具有空中格斗、自动搜索、捕获和跟踪目标的能力。
022 中国“霹雳9号”空对空导弹 中国第三代空对空导弹。弹长3米,直径160毫米,速度M2。最大作战高度21千米,最小作战距离500米,最大射程15千米。采用红外雷达制导,可自动搜索、截获和跟踪目标,“发射后不用管”,有较高的机动性和近距格斗能力。
023 中国“红箭8号”反坦克导弹 中国第二代反坦克导弹,可供步兵携带,单兵发射,也可车载机动发射,弹长875毫米,直径120毫米,射程3000米,破甲厚度大于900毫米,抗干扰能力强,命中率大于90%,由行军转为战斗状态不到1分钟。采用光学瞄准和红外制导。不怕恶劣气候,也经得起路面不平引起的颠簸。
024 中国台湾“天弓二型”地对空导弹 台湾自行研制的防空导弹。“天弓一型”1989年服役,射程30~40千米。“天弓二型”为改进型,射程增至100千米,采用主动雷达制导。具有敌我识别、同时攻击多个目标的能力,反应时间短,抗干扰能力强。一型和二型分别用于取代从美国购买的“雷克”和“奈基Ⅱ”导弹。
东风-31是采用固体燃料的3级机动导弹,射程可达8000公里。(由媒体猜测,官方仅公布有此计划。)
由于种类太多,太杂,数量不好统计。望楼主见谅。
B. 【求教】急!超音速战斗机在超音速飞行时发射炮弹或导弹吗
浅谈近距离格斗与超视距空战
人的视力范围有一定限度,在空中看到一架战斗机的平均距离是8千米左右,这是天气晴朗时的平均值。有雾、雨天、黄昏时候,能见度很差,看见的距离要大为减小。而且每个人的视力差别很大,有的飞行员可在20千米以外看到飞机,有的近到8千米也看不见。此外,还与飞机大小有很大关系,对于轰炸机可以看得远一些。的肉眼还有一个特点,如果已看到飞机,一直盯住让飞机逐渐飞远则可在10多千米后才看不见。相反,在天空中找飞机,有时已飞到5千米距离还找不到。8千米目前是一个一般公认(并无明文规定)的数值。两架飞机在这一距离内空战称为目视格斗空战。70年代以前绝大多数的空战是这一类空战。
“看不见就打”的空战称为超视距空战。既然称为“看不见”就表示肉眼看不见,两机作战距离在8千米以上。当然,肉眼看不见不等于“盲目”乱打。目前主要是靠雷达或红外线瞄准跟踪装置发现目标并依靠这些设备来进行作战。战斗机上的雷达发现空中目标的距离目前是100千米左右,有的飞机还要远一些。大型战斗机的雷达天线直径在1米以上,雷达功率很大,最远可“看”到150千米。而小型战斗机机头很小,可以安装的雷达天线不大,例如米格-21飞机的天线,直径很难超过0.5米,有效发现距离一般只有30千米左右。
这里还要说明一点,雷达的发现距离与目标的大小以及“隐身”能力有关。衡量后者的参数称为“雷达反射截面”(RCS),单位是平方米。它的物理意义是将飞机对雷达波反射的能力用一块“平板”的反射能力来代替。飞机愈大,RCS就愈大。飞机采用新技术,隐身能力愈强,RCS就愈小。目前无隐身功能的战斗机,例如小型飞机米格-21和F-5的RCS约为3~4米。而大型战斗机,如苏-27、F-15,RCS约为12米。中型战斗机F-16、“幻影”2000等,RCS约为5~6米。现代机载雷达资料上说的发现距离是指对中型战斗机而言,即以RCS为5米为准。但俄罗斯的机载雷达标准往往是指RCS为3米,所以俄罗斯雷达发现距离如果是100千米,用西方标准来说应是117千米(发现距离与目标RCS的1/4次方成比例)。
在“看不见”条件下搜索跟踪目标的还有红外线装置(IRST)。它是利用目标飞机尾喷流或机体温度升到70℃~80℃以上时发出的红外线发现和跟踪目标。这种新型的装置包括成千上万个红外元件,接收到的目标图像不是一个亮点而是由许多小方块组成的目标飞机图像。它对战斗机有效搜索距离是:迎头40千米,尾追约80千米。对大型轰炸机则会更远一些。这种装置的搜索方位角可达到±60°,所以和雷达的功能已经很接近。不过它不能测量目标的速度和飞行方向,也不能测量目标的距离。为此这类装置一般还要配上激光测距仪才便于发射空空导弹。但有了这套装置后,飞机可以在雷达被对方干扰时仍能发现和跟踪目标,进行超视距空战。俄罗斯的苏-27、苏-35等战斗机都有这种装置,而西方国家的战斗机F-16、F-15还没有,只是欧洲战斗机EF2000和法国“阵风”已经配备IRST。
为了进行超视距空战,用航炮作为武器是绝对不成的。航炮的有效攻击射程不超过600~800米。早期的空空导弹有效射程8~10千米,在超视距空战中也难以发挥作用,所以这类型空战一定要配备射程达25千米以上的中距空空导弹。80年代以后,这类导弹已经逐渐成熟,例如美国的“麻雀”AIM-7M和俄罗斯的R-98M(北约称之为AA-3“阿纳布”)。最新的中距导弹有3种,即俄罗斯的R-77、美国的AIM120和法国的“米卡”(MICA),这些导弹的最大有效射程都在50千米左右或更远一些,特别适合超视距空战。1991年的海湾战争首次出现用中距导弹击落的飞机比用格斗导弹击落的多的情况。前者一共击落25架,用格斗导弹只击落8架。而在1982年的马岛战争中,空战中被击落的16架飞机全是被格斗导弹击落的。若从一般概念来说,很远距离就能将目标击落,那又何必再去格斗一番呢?因此这就在下一代战斗机的发展中引出一个问题——设计战斗机的重点应放在超视距空战还是放在格斗目视空战?
这两种空战对飞机的要求是不完全相同的。
其一,在作战空域方面,格斗空战宜在高亚音速甚至低速区进行,这时飞机的转弯角速度最大,飞机转头容易。空战高度也不宜太高。在高空飞机转弯半径很大。例如在高度11千米、M数0.9时,转弯半径一般都要4 ~5千米。如果速度是超音速,转弯半径将超过8千米。这就是说等到飞机转过头来,很可能已经看不见对方飞机,无法目视格斗了。而超视距空战是靠发射空空导弹作战,高空作战困难不大,甚至可以打迎头比自己高或低几千米的目标。同时,导弹在超音速发射时射程还会增大不少,所以更宜于在高空超音速作战。
其二,格斗空战要求飞机机动性、敏捷性都十分好。现代空战虽然不再限于只能从目标尾后攻击,但无论如何应先将机头大致指向目标。战斗机能向后发射导弹的技术目前尚不成熟。如果飞机能够迅速偏转使机头指向目标(即所谓瞬时转弯角速度大)??这将在格斗中占很大优势。在大迎角或超过失速迎角时仍能做机动的飞机将更容易使机头指向目标(即所谓过失速机动)。而超视距作战只要求飞机在超音速飞行时机动性好一些,能保证发射导弹即可。在远距离追踪目标并不要求很快偏转机头,因为跟踪角速度不大。对飞机也不要求翻斤斗或下滑倒转等机动动作。
其三、格斗空战要求飞机能从很低速尽快增加到高亚音速。而超视距空战则要求飞机能很快从高亚音速加速到超音速。
其四,格斗空战对地面指挥引导要求低一些,只要引导到空战区以后,目视作战就全靠自己了。超视距空战全过程有地面或空中预警机通报空中目标分布情况,好处很大。有地面情报直接支援的一方将占很大优势。
其五,格斗空战对隐身技术不作要求,在目视距离内敌我识别系统的好坏影响也不大。而这两项技术在超视距空战中是至关重要的,直接影响到作战效果,是作战成败的关键因素之一。
由此可见,设计以超视距空战为主的飞机与目视格斗空战优先的飞机完全不同。当然两种形式的空战在飞机设计上都应该能很好完成。但从技术角度看,全都优先是不可能的,而应该有所侧重。80年代新设计或使用的战斗机有5种,即法国“阵风”,英、德、意、西班牙的欧洲战斗机EF2000,俄罗斯的苏-37和I.42,还有瑞典萨伯公司的JAS-39。其中EF2000明确以超视距空战为主,格斗机动能力放在次要位置。它的飞机外形和设备都是从这个角度来设计的。但这种飞机并不将隐身技术放在优先位置。苏-37和I.42都有很强的超视距空战能力,主要是选用很好的机载雷达,配备最新的中距空空导弹。但从其飞机布局看,格斗机动能力也很好。苏-37是在格斗空战性能优秀的苏-27飞机基础上改进而成,保留了其格斗性能的优点,而对隐身能力要求不高,只是“尽力而为”,飞机布局没有大的变动(只改为三翼面),所以应该算是格斗为主兼顾其它。I.42似乎加强了超视距空战能力,
据称具有不开加力超音速飞行(超音速巡航)能力,隐身性能也不错(准隐身飞机),但这种飞机近期不大可能投产,因为太大、太昂贵,与俄罗斯目前经济条件不适应。法国“阵风”是作为格斗飞机设计的,只是兼顾超视距空战,具有有限的超音速巡航能力,也只有中等水平的隐身能力。使用的“米卡”导弹是双用途的,既能中距空战也有相当格斗能力。由于导弹重量较轻,其最大射程,即超视距空战能力将有所减弱。瑞典的JAS-39是轻型战斗机,超视距空战能力很弱,雷达性能有限,而其格斗性能似乎也不突出,但最大的优点是价格较便宜。
C. R77M是一种怎样的导弹
空空中距导弹。RR77M是R-77的改进型!!重185公斤,射程比R-77长一些,改进了弹头和发动机,并改善了空气动力学性能!!
RR77(AA-12)最大射程是110公里比AIM-120要远一点(AIM-120有效射程为48公里,尾追14公里,动力射程70公里。弹重158公斤,长3。65米)
D. 什么是超视距空战
的视力范围有一定限度,在空中看到一架战斗机的平均距离是8千米左右,这是天气晴朗时的平均值。有雾、雨天、黄昏时候,能见度很差,看见的距离要大为减小。而且每个人的视力差别很大,有的飞行员可在20千米以外看到飞机,有的近到8千米也看不见。此外,还与飞机大小有很大关系,对于轰炸机可以看得远一些。的肉眼还有一个特点,如果已看到飞机,一直盯住让飞机逐渐飞远则可在10多千米后才看不见。相反,在天空中找飞机,有时已飞到5千米距离还找不到。8千米目前是一个一般公认(并无明文规定)的数值。两架飞机在这一距离内空战称为目视格斗空战。70年代以前绝大多数的空战是这一类空战。
“看不见就打”的空战称为超视距空战。既然称为“看不见”就表示肉眼看不见,两机作战距离在8 千米以上。当然,肉眼看不见不等于“盲目”乱打。目前主要是靠雷达或红外线瞄准跟踪装置发现目标并依靠这些设备来进行作战。战斗机上的雷达发现空中目标的距离目前是100千米左右,有的飞机还要远一些。大型战斗机的雷达天线直径在1米以上,雷达功率很大,最远可“看”到150千米。而小型战斗机机头很小,可以安装的雷达天线不大,例如米格-21飞机的天线,直径很难超过0.5米,有效发现距离一般只有30千米左右。
这里还要说明一点,雷达的发现距离与目标的大小以及“隐身”能力有关。衡量后者的参数称为“雷达反射截面”(RCS),单位是平方米。它的物理意义是将飞机对雷达波反射的能力用一块“平板”的反射能力来代替。飞机愈大,RCS就愈大。飞机采用新技术,隐身能力愈强,RCS就愈小。目前无隐身功能的战斗机,例如小型飞机米格-21和F-5的RCS约为3~4米。而大型战斗机,如苏-27、F-15,RCS约为12米。中型战斗机F-16、“幻影”2000等,RCS约为5~6米。现代机载雷达资料上说的发现距离是指对中型战斗机而言,即以RCS为5米为准。但俄罗斯的机载雷达标准往往是指RCS为3米,所以俄罗斯雷达发现距离如果是100千米,用西方标准来说应是117千米(发现距离与目标RCS的1/4次方成比例)。
在“看不见”条件下搜索跟踪目标的还有红外线装置(IRST)。它是利用目标飞机尾喷流或机体温度升到70℃~80℃以上时发出的红外线发现和跟踪目标。这种新型的装置包括成千上万个红外元件,接收到的目标图像不是一个亮点而是由许多小方块组成的目标飞机图像。它对战斗机有效搜索距离是:迎头40千米,尾追约80千米。对大型轰炸机则会更远一些。这种装置的搜索方位角可达到±60°,所以和雷达的功能已经很接近。不过它不能测量目标的速度和飞行方向,也不能测量目标的距离。为此这类装置一般还要配上激光测距仪才便于发射空空导弹。但有了这套装置后,飞机可以在雷达被对方干扰时仍能发现和跟踪目标,进行超视距空战。俄罗斯的苏-27、苏-35等战斗机都有这种装置,而西方国家的战斗机F-16、F-15还没有,只是欧洲战斗机EF2000和法国“阵风”已经配备IRST。
为了进行超视距空战,用航炮作为武器是绝对不成的。航炮的有效攻击射程不超过600~800米。早期的空空导弹有效射程8~10千米,在超视距空战中也难以发挥作用,所以这类型空战一定要配备射程达25千米以上的中距空空导弹。80年代以后,这类导弹已经逐渐成熟,例如美国的“麻雀”AIM-7M和俄罗斯的R-98M(北约称之为AA-3“阿纳布”)。最新的中距导弹有3种,即俄罗斯的R-77、美国的AIM120和法国的“米卡”(MICA),这些导弹的最大有效射程都在50千米左右或更远一些,特别适合超视距空战。1991年的海湾战争首次出现用中距导弹击落的飞机比用格斗导弹击落的多的情况。前者一共击落25架,用格斗导弹只击落8架。而在1982年的马岛战争中,空战中被击落的16架飞机全是被格斗导弹击落的。若从一般概念来说,很远距离就能将目标击落,那又何必再去格斗一番呢?因此这就在下一代战斗机的发展中引出一个问题——设计战斗机的重点应放在超视距空战还是放在格斗目视空战?
这两种空战对飞机的要求是不完全相同的。
其一,在作战空域方面,格斗空战宜在高亚音速甚至低速区进行,这时飞机的转弯角速度最大,飞机转头容易。空战高度也不宜太高。在高空飞机转弯半径很大。例如在高度11千米、M数0.9时,转弯半径一般都要4 ~5千米。如果速度是超音速,转弯半径将超过8千米。这就是说等到飞机转过头来,很可能已经看不见对方飞机,无法目视格斗了。而超视距空战是靠发射空空导弹作战,高空作战困难不大,甚至可以打迎头比自己高或低几千米的目标。同时,导弹在超音速发射时射程还会增大不少,所以更宜于在高空超音速作战。
其二,格斗空战要求飞机机动性、敏捷性都十分好。现代空战虽然不再限于只能从目标尾后攻击,但无论如何应先将机头大致指向目标。战斗机能向后发射导弹的技术目前尚不成熟。如果飞机能够迅速偏转使机头指向目标(即所谓瞬时转弯角速度大)�这将在格斗中占很大优势。在大迎角或超过失速迎角时仍能做机动的飞机将更容易使机头指向目标(即所谓过失速机动)。而超视距作战只要求飞机在超音速飞行时机动性好一些,能保证发射导弹即可。在远距离追踪目标并不要求很快偏转机头,因为跟踪角速度不大。对飞机也不要求翻斤斗或下滑倒转等机动动作。
其三、格斗空战要求飞机能从很低速尽快增加到高亚音速。而超视距空战则要求飞机能很快从高亚音速加速到超音速。
其四,格斗空战对地面指挥引导要求低一些,只要引导到空战区以后,目视作战就全靠自己了。超视距空战全过程有地面或空中预警机通报空中目标分布情况,好处很大。有地面情报直接支援的一方将占很大优势。
其五,格斗空战对隐身技术不作要求,在目视距离内敌我识别系统的好坏影响也不大。而这两项技术在超视距空战中是至关重要的,直接影响到作战效果,是作战成败的关键因素之一。
由此可见,设计以超视距空战为主的飞机与目视格斗空战优先的飞机完全不同。当然两种形式的空战在飞机设计上都应该能很好完成。但从技术角度看,全都优先是不可能的,而应该有所侧重。80年代新设计或使用的战斗机有5种,即法国“阵风”,英、德、意、西班牙的欧洲战斗机EF2000,俄罗斯的苏-37和I.42,还有瑞典萨伯公司的JAS-39。其中EF2000明确以超视距空战为主,格斗机动能力放在次要位置。它的飞机外形和设备都是从这个角度来设计的。但这种飞机并不将隐身技术放在优先位置。苏-37和I.42都有很强的超视距空战能力,主要是选用很好的机载雷达,配备最新的中距空空导弹。但从其飞机布局看,格斗机动能力也很好。苏-37是在格斗空战性能优秀的苏-27飞机基础上改进而成,保留了其格斗性能的优点,而对隐身能力要求不高,只是“尽力而为”,飞机布局没有大的变动(只改为三翼面),所以应该算是格斗为主兼顾其它。I.42似乎加强了超视距空战能力,据称具有不开加力超音速飞行(超音速巡航)能力,隐身性能也不错(准隐身飞机),但这种飞机近期不大可能投产,因为太大、太昂贵,与俄罗斯目前经济条件不适应。法国“阵风”是作为格斗飞机设计的,只是兼顾超视距空战,具有有限的超音速巡航能力,也只有中等水平的隐身能力。使用的“米卡”导弹是双用途的,既能中距空战也有相当格斗能力。由于导弹重量较轻,其最大射程,即超视距空战能力将有所减弱。瑞典的JAS-39是轻型战斗机,超视距空战能力很弱,雷达性能有限,而其格斗性能似乎也不突出,但最大的优点是价格较便宜。
未来的空战肯定是两种形式并存,预测“远程作战即定胜负,无需格斗”可能言之过早。所以下一代战斗机的趋向似乎是“超视距优先兼顾格斗”,这更容易为军方所接受。不过具体优先特性分配,优先到何等程度要视各国的军方需求,即其国防特点和军事思想而定。
E. 关于俄罗斯奥斯卡级核潜艇的资料。特别是库尔斯克号
奥斯卡级是俄国最新一级攻击型核潜艇,现役5艘,分I、II两型。其中前2艘为I型,自第3艘起改为II型比型长11米,具电子设备更为先进。该级艇为双轴双桨推进系统,配两座PWR反应堆。 奥斯卡级核潜艇装备了24枚SS-N-19超音速反舰导弹。4具533毫米鱼雷发射管,可发射SS-N-16导弹和65型鱼雷。该级艇用于发射管使用的导弹和鱼雷总数为24枚。该艇即可单独 作战,也可与其他舰艇配合作战。该艇电子设备包括1部魔顶对海搜索雷达和艇壳主被动搜索声纳。
主尺寸:艇长:154米、艇宽:18.2米、吃水:9米排水量:13400-14700吨(水面)、16400-24000吨(水下)动力:2座VM-5 190 MWt压水堆2台蒸汽轮机90000马力航速:16节(水面)、32节(水下)潜深:500米艇员:130名 武器装备:24具导弹发射筒,用于发射SS-N-19远程反舰导弹(500千米)4具533毫米鱼雷发射管,用于发射SS-N-15中程反潜导弹(50千米)和53型鱼雷4具650毫米鱼雷发射管,用于发射SS-N-16远程反潜导弹(120千米)和65型鱼雷 电子设备:声纳:“鲨鱼鳃”型主/被动中、低频搜索和攻击用艇壳声纳,“鼠鸣”型主动高频攻击用声纳,“鲨鱼肋”型被动低频舷侧阵声纳,“金字塔”型被动甚低频拖曳线列阵声纳,用于被动搜索远程警戒。雷达:“窥探对”型Ⅰ波段对海警戒雷达,“场灯”、“方环”型侦察雷达,“穿孔盘”型火控雷达、“酒钵”导弹制导雷达。 “奥斯卡”级(Oscar)巡航导弹攻击核潜艇主要用于攻击美国的航母编队,保护前苏联的弹道导弹核潜艇,使敌方攻击型核潜艇难以接近前苏联海军的舰队和基地等。1978年开工,1980年4月下水,1982年交付海军,从第3艘起改为Ⅱ型。目前“奥斯卡”Ⅰ已退役。已建或在建的“奥斯卡”Ⅱ约有15艘,其中3艘或退役或封存,1艘毁损(“库尔斯克”Kursk,舷号K-141)。“奥斯卡”Ⅱ是俄罗斯反航空母舰的核心力量,也是当前世界上吨位最大、威力最强的巡航
附:奥斯卡-Ⅱ型核潜艇
60年代,前苏联针对美国迅速发展的航母战斗群,提出改进研制高性能巡航导弹核潜艇,奥斯卡级核潜艇就是为满足这一需要而推出的前苏联第四代巡航导弹核潜艇(SSGN)。
奥斯卡级潜艇至今已建造14艘,其中4艘服役于太平洋舰队,其他均在北方舰队服役。奥斯卡-Ⅰ型艇已提前退役,目前,奥斯卡-Ⅱ型艇是俄罗斯反航空母舰的核心力量,也是当前世界上吨位最大、威力最强的巡航导弹核潜艇。
奥斯卡级核潜艇现有12艘在役,分属两个舰队,其中:北方舰队8艘,包括K148、K119、K410、K266、K186、K141、K512及K530艇,基地为BolshayaLopatka;太平洋舰队4艘,包括K132、K173、K442及K456艇。其服役状况为:
舷号艇名下水服役
K148克拉斯诺达尔1985.81986.12
K132别尔桑罗德1986.31987.1
K119沃罗诺什1987.121988.12
K173坦波夫1989.11989.12
K410斯摩捷斯克1989.121990.12
K442普斯科夫1990.11991.1
K456卡萨特卡1991.121992.11
K266奥勒尔1992.11993.1
K186奥姆斯克1993.51993.12
K141库尔斯克1994.51994.10
K512托木斯克1995.71997.5
K530别尔桑罗德19981999
重要的使命
奥斯卡-Ⅱ型艇的主要任务,是在靠近俄罗斯的海域攻击敌方航母作战编队,可用多枚导弹同时对目标发动攻击,也可与远程轰炸机和水面舰艇协同作战,对航母作战编队实施饱和攻击。其初始目标数据由卫星、侦察机或水面舰艇提供。
该级艇装备SS-N-24导弹后,还可以利用远程巡航导弹攻击敌方国土。该级艇也可承担巡逻、侦察、搜集情报、布雷等多种作战任务。
先进的结构性能
该级艇采用水滴形线型,双壳体结构。采用变直径的圆形耐压壳体,中部直径8.5米,两层壳体之间的间距约为4米,所以艇体很宽。艇体艏艉非耐压壳体呈圆锥形,具有水滴形艏部,艉部是十字型操纵面,指挥台围壳较长约32米。为了容易破冰浮出,指挥台围壳装设了加强板,围壳顶做成圆形加强盖。在围壳内设有漂浮救生舱。艏水平舵靠近艏部,可以收回艇体中。Ⅰ型艇内分9个舱室,采用小分舱结构。Ⅱ型艇多设一个舱室,排水量大大增加。
该级艇装备了2台OK-650B型紧凑布置反应堆,每台反应堆热功率190MW,堆芯寿命12年以上,使该艇具有很强的续航力。
非凡的作战系统
该级艇装备有24具SS-N-19导弹发射筒,布置在艇前中部耐压壳体与非耐压壳体之间。指挥台每侧有6个矩形盖板,长约7m,宽约2m,内装2具导弹发射装置,与垂线成45度斜角布置。SS-N-19型反舰导弹(“花岗岩”型)为70年代初开始研制的中远程超音速(1.6Ma)掠海飞行多用途导弹,是SS-N-12导弹的改进型,该型导弹可从水下发射。
艇上还装有4具先进的鱼雷发射管,可发射53型鱼雷,航速45kn,航程20km,潜深300m;65型鱼雷,航速60kn,航程40km,潜深1000m;SS-N-15型反潜导弹,射程50km,战斗部为200kt当量核深弹;SS-N-16型反潜导弹,射程120km,战斗部为40型主/被动声自导鱼雷。其自卫武器装载量28枚。
电子战设备:该级艇的声纳系统有“鲨鱼鳃”型主/被动中、低频搜索和攻击用艇壳声纳,“鼠鸣”型主动高频攻击用声纳,“鲨鱼肋”型被动低频舷侧阵声纳,“金字塔”型被动甚低频拖曳线列阵声纳,用于被动搜索远程警戒。
其导航系统为惯性导航、卫星导航、无线电六分仪等组成的综合导航系统。艇上装有“窥探对”型Ⅰ波段对海警戒雷达,“场灯”、“方环”型侦察雷达,“穿孔盘”型火控雷达。
通信系统有“活动弹簧”型卫星通信设备,低频与甚低频拖曳浮标天线,极低频拖曳浮力天线,其浮力电缆长630米,拖曳深度90米。
该级艇装备了作战控制情报系统和先进导弹射击指挥仪,具有多种目标攻击程序和抗干扰能力。电子对抗设备有“圆边帽”(RimHat)型、“团砖”(BrickPulp)型、“棒砖”(BrickSpit)型电子对抗措施;还有“克里姆”-2型敌我识别器。
武备:除24具巡航导弹发射筒分两列倾斜40°布置于耐压壳与非耐压壳之间、装备24枚SS-N-19反舰导弹外,还有4具533鱼雷发射管,4具650鱼雷发射管,可携带53型反潜反舰鱼雷、65型反舰鱼雷、SS-N-15、SS-N-16型反潜导弹,共24枚。
水声设备:“鲨鱼鳃”综合声纳1部,“鼠叫”2046型拖曳基阵、被动艇壳声纳、主动中频测距声纳、低/中频声纳、主/被动搜索和攻击声纳。
雷达:“窥探”双搜索雷达、“酒钵”导弹制导雷达、敌我识别雷达。
通信:极低频/甚低频通信浮标和浮力天线,高频和甚高频通信天线,“欢春”卫星通信系统。
强大的反舰能力
该艇携带24枚SS-N-19反舰导弹,飞行速度1.6Ma,末段突防速度3.5Ma,射程20?550km,由指令修正制导惯性飞行,主动雷达寻的,它突防能力强,打击威力大,可以对航母等大型水面舰艇实施饱和攻击。
此外,该潜艇还可用65型反舰鱼雷进行对舰攻击。该鱼雷采用主/被动声自导和尾流制导,可携带核弹头。
据报道,奥斯卡-Ⅱ的后续艇已装备SS-N-24对地巡航导弹,射程4000km,可携带100万吨当量的核弹头,可以实施对地攻击,完成战略攻击任务。
惊人的反潜能力
该型艇不仅可以用53型鱼雷进行反潜,还可以用SS-N-15、SS-N-16型反潜导弹进行对潜攻击。SS-N-15型反潜导弹,可携带20万吨当量的核弹头,从533鱼雷发射管发射;SS-N-16型反潜导弹,也可从650鱼雷发射管发射。此外,还可发射SS-N-16的改进型SS-N-16B导弹,可装1枚核弹头。上述反潜导弹由于飞行速度快,大大缩短了飞临目标的时间,使被攻击潜艇难以逃脱,因此它们反潜威力大,命中率高。
良好的隐身本领
该级艇采用多种降噪措施,采用七叶大侧斜螺旋桨、浮筏减振、艇体外表敷设消声瓦等降噪措施,极限下潜深度达500米,并采用了多种隐身措施,因而隐身本领极高。
据德国《海军评论》报道,该型艇指挥围壳内还装有对空导弹系统,这使该艇具备了一定的防空能力。
超常的自持能力
该级艇属于大型核潜艇,艇内空间大,可布置多种设备,改善了艇员工作和生活条件,包括设置健身房、游泳池、日光浴室、桑拿浴室和娱乐区等,使该艇的自持力达到120天,从而提高了艇的战斗力。
顽强的生命力
该级艇结构独特,两层壳体之间有4米间距充满水,可承受一枚鱼雷的攻击;结构外形采取多种措施有利于在北极冰下活动;尤其是采用两套核动力装置互为备用;由于艇体采用小分舱,有多个舱室,所以可实现一舱进水不沉。因此,该艇的生命力极强。
该型艇是当前世界上吨位最大、威力最强的一种巡航导弹核潜艇,已成为俄罗斯反航空母舰的核心力量。
灵活的打击样式
反潜攻击奥斯卡接到反潜命令后,可高速机动接近预定的反潜海域,隐蔽低速搜索航行,声纳用被动方式工作。发现目标后,可以用SS-N-15、SS-N-16反潜导弹或53鱼雷实施直接攻击。
攻击敌航母或海上舰船主要作战方式有:阵地设伏、区域游猎、引导截击、长途奔袭、追击攻击等。对近距离目标主要以53型、65型鱼雷实施攻击,对远距离目标主要以SS-N-19型反舰导弹实施攻击。
它能以下述方式对敌航母实施攻击:
1.在敌航母预定航道或活动区域设伏,做低速游猎,在敌航母编队经过时用携带核弹头的65型鱼雷实施隐蔽攻击。
2.在预警机或卫星引导下,接近敌航母群,在敌航母反潜区域外,在预警机、卫星或侦察船引导下发射SS-N-19反舰导弹实施远程攻击。
俄罗斯的“奥斯卡”级潜艇是目前世界上吨位最大的核潜艇之一,是俄罗斯军队对付航空母舰的重要力量。
“奥斯卡”级潜艇的艇体采用了水滴型流线外形,潜艇外壳采用钛合金制造,钛合金的优点在于硬度大、重量轻、无磁性。
硬度大可以使潜艇下潜得更深;重量轻可以增加潜艇的有效载荷,提高潜艇的航行速度,延长续航时间;无磁性则可避免受到磁性水雷的攻击,避免被反潜的磁异常探测器探测到。
潜艇在深海里最容易被探测到的特征是噪声。为了有效的降低噪声,“奥斯卡”级潜艇采用了一系列有效措施。
首先该级潜艇上的开口很少,保证了艇体的光滑,有效降低了流体噪声。
其次,“奥斯卡”级艇所有的机械设备均经过严格的噪声测试和筛选,并且采用了七叶低噪声大斜度螺旋桨,这些措施大大降低了机械噪声,降低了空泡噪声和桨叶的谐震噪声。
另外该级潜艇的外壳包裹了一层消音层。这种消音层用特种橡胶加金属粒子制成,内部有大量的微孔,既能吸收敌方主动声纳发射的声波能量,又能吸收自身内部的机械噪声。
“奥斯卡”级潜艇的最大下潜深度超过500米,其主要的武器装备包括SS-N-19型中远程反舰导弹、53型反潜反舰鱼雷以及65型反舰鱼雷等。SS-N-19型导弹的飞行速度约1.6M,最大射程400千米,可从水下发射。65型鱼雷直径650毫米,长度10米,全重约4.5吨,航速每小时100千米左右,最大射程超过50千米;采用热动力推进,尾流自导。
"库尔斯克"号潜艇是俄罗斯海军所拥有的8艘"奥斯卡2"级核潜艇中的一艘,由俄罗斯"红宝石"设计局设计,俄北德文斯克造船厂制造。该艇于1994年5月下水,1995年1月正式服役;艇上的许多设计方案都是独一无二的,代表了俄核潜艇的最高尖端技术,被誉为俄罗斯"航母终结者"。正是"奥斯卡"核潜艇集中了俄罗斯各种尖端的潜艇制造技术,所以它具有非常优良战术技术性能。它的艇体采用了水滴型,艇上开口很少,艇上的机械装置都经过严格的测试及减震处理,还采用了7叶大侧斜、低噪声螺旋桨,艇的外壳敷设有大量的消声瓦,从而大大降低了噪声。据称,"奥斯卡2"级潜艇比美国"洛杉矶"级改进型核潜艇还要安静。"奥斯卡"级潜艇使用钛合金来制造艇壳,不仅磁性极小,而且可以承受较大的水压力,因此极大地提高了潜艇的隐蔽性。
"库尔斯克"号是俄海军最新的巡航导弹核潜艇之一,隶属于北方"队的第41巡航导弹核潜艇大队。"库尔斯克"号核潜艇艇体长154米,宽18.2米,吃水9米,排水量1.39万吨;由两个核反应堆提供动力,深海航行速度可达28节,水面航行速度超过19节,续航能力为120天,最大下潜深度为300米;编制艇员107人,其中包括48名军官,最多可载员135人。
"库尔斯克"号核潜艇是专门用来攻击航空母"的,因而被誉为"航母终结者"。该艇装有"花岗岩"导弹发射装置,嵌在非耐压壳体内,固定倾斜40度布置,携带24枚SS-N-19新型超音速"对"巡航导弹,可单发,也可以齐射。目前,世界上任何一支"队都无法对付这种导弹的连续来袭。该艇还装有4具533毫米和4具650毫米鱼雷发射管,包括鱼雷管发射的反潜导弹在内,总共装有32枚先进的管射武器。由于该"可以发射鱼雷和反潜导弹,从而大大提高其自卫和攻击能力。
据英国权威的《简氏防务周刊》透露,一艘"库尔斯克"号潜艇可以击沉一艘航空母"和航母编队的其他"艇,同时还可以攻击敌方潜艇。该刊同时透露,"库尔斯克"号上搭载的24枚最新型的巡航反"导弹可携带高爆弹头或者核弹头。另外,潜艇上还安装了新型的声纳系统。这些军事机密,至今北约尚未准确掌握。
F. 苏联到底留下了多少先进黑科技
苏联留下的黑科技:安-225与“暴风雪”航天飞机、耐寒技术、空间站、地效飞行器、“森林杀手”系列越野车、1K17激光坦克、基洛夫级巡洋舰、同轴反转螺旋桨
1.安-225与“暴风雪”航天飞机
“暴风雪”号航天飞机曾经是苏联航空工业的一大骄傲,机翼呈三角形。机长36.37米、高16.35米,翼展23.92米,机身直径5.6米,起飞重量105吨,大小与普通大型客机相差无几,外形同美国航天飞机相仿。
安-225运输机,是苏联安东诺夫设计局研制的超大型军用运输机,是为运输暴风雪号航天飞机而专门研制,机身长度84米,翼展88.4米,最大起飞重量640吨,货舱最大载重250吨,机身顶部最大载重200吨,最大飞行速度850千米/小时,最大航程1.54万千米(最大油量)。
6.1K17激光坦克
1K-17型激光坦克是前苏联在冷战时期为对抗由美国主导的北约而研发的一种路基车载激光武器。
这种车辆的主要作战目标是破坏敌方导弹、地面车辆和航空器的光电设备。
后来由于苏联解体而未能真正服入现役。
7.基洛夫级巡洋舰
苏联"基洛夫"级重型导弹巡洋舰由位于彼得堡市的波罗的海造船厂建造。这是一级巨大的核动力舰艇,是二战结束后世界上建造的最大的巡洋舰,满载排水量超过2.5万吨,装备了即垂直发射系统和大量导弹,并配有3架直升机,其吨位之大,火力之强,一度使各国海军为之震惊。该级舰装备各型导弹近500枚,是美国载弹量最大的"提康德罗加"级导弹巡洋舰的四倍。可以提供舰队防空和反潜,并与敌方大型水面舰艇交战,包括打击大型航空母舰的能力。
8.同轴反转螺旋桨
同轴反转螺旋桨,是涡轮螺旋桨发动机所特有的一类螺旋桨。它与普通的螺旋桨最大的区别是,在单个发动机上有两组并列转动的螺旋桨,但是这两组螺旋桨转动方向相反。同轴反转螺旋桨虽然欧美在这方面也有研究,但是却没有苏联玩的这么溜。无论是固定翼飞机还是直升机,苏俄利用同轴反转螺旋桨技术,创造出了无数的经典。
G. 中国即将从俄罗斯购买48架什么规格的战机。优点尤其是起飞距离由一般机需5公
中国即将从俄罗斯购买48架苏-35战斗机 。 苏霍伊苏-35(英语:Sukhoi Su-35,俄语:КБ Сухой Су-35)战斗机,北约代号“侧卫-E”或“超侧卫”(Flanker-E、Super Flanker)是苏霍伊设计局在苏-27战斗机的基础上研制的深度改进型单座双发、超机动多用途重型战斗机,在战斗机世代上属于第四代战斗机改进型号,即第四代半战斗机。
2014年2月12日俄罗斯国防部长绍伊古、空军总司令邦达列夫、苏霍伊公司总裁波戈相在阿穆尔河畔共青城飞机厂参加向俄空军交付12架量产型苏-35S歼击机的正式仪式。这批战机编入东部军区第3空防司令部第303近卫混成航空兵师第23歼击航空兵团第1大队,部署在中国东北当面的哈巴罗夫斯克边疆区捷姆吉机场。中文名苏霍伊苏-35
外文名КБ Сухой Су-35
首 飞1988-5(Su-27M)/2008-2(Su-35)
类 型多用途战斗机
造 价65,000,000Intl.$(2008)
设 计苏霍伊设计局
生 产共青城飞机制造联合体发展沿革
编辑
27M计划
上个世纪八十年代初期,苏-27S刚刚问世
F-15战斗机C型
F-15战斗机C型
,苏霍设计局就开始了大改苏-27的构想,也就是后来的苏-27M计划,要将苏-27改为先进的多用途战斗机。这除了基于对多用途的需求外,还有两个重要原因:首先,苏-27S的N-001雷达与F-15A的AN/APG-63相比没有多少优势,而美国已经着手改良其处理器及后续的F-15C,这将使得苏-27不能如期望般达到F-15的1.1倍战力。再者,美国于1976年提出先进中程空对空导弹(AMRAAM)计划,也就是后来的AIM-120A,苏联经过情报分析,认为必须有类似的武器才能与之对抗。苏霍设计局期望较晚问世的苏-27能达对手的1.1倍,因此上述预测是相当严
米哈伊尔·西蒙诺夫总师
米哈伊尔·西蒙诺夫总师
峻的问题,故当时就着手进行苏-27M计划。
1983年,苏-27M的目标设定出炉:他必须超越F-15及F-16的改良型,且必须为多用途、全天候、能打击低空飞行物如巡航导弹等。装备新的RL苏-27雷达系统,机载主被动电子对抗系统,新的座舱界面、导航系统等,能发射主动雷达制导空空导弹及对地精确制导武器。1983年12月29日,苏联军方批准苏-27M计划。1985年在苏霍设计局总设计师米哈伊尔‧西蒙诺夫(Mikhail Simonov)的监督下,由米哈伊尔‧波戈(Mikhail Pogosyan)领导的设计团队展开苏-27M的概念设计。[1]
原型生产
1987年,苏-2
Su-35原型Su-27M首机701号机于莫尼洛空博
Su-35原型Su-27M首机701号机于莫尼洛空博
7M首架原型机T-10M-1(701号)出厂,这是共青城飞机制造厂(KnAAPO)改良自一架生于1986年的苏-27S而来,1988年6月28日在首席试飞员欧列格‧卓伊(Oleg Tsoy)驾驶下首飞。1989年1月18日,T-10M-2(702号)首飞。此外,705、706、707号原型机也是改自苏-27S的,用于试验射控系统、飞控系统等设备。在结构上,这些飞机与苏-27S的不同在于前机身、前翼、尾杆。而中段机身、垂尾、鼻轮都与苏-27S同。其中706号于1992年2月在明斯克会议上连同其他军用机展示予苏联国防官员及叶利钦总统以争取经费,获叶利钦特别拨款建造10架。701号于1990年代末期功成身退,送进莫尼洛空军博物馆永久展示。
除了701、702、705、
一张珍贵的703号机于格洛莫夫
一张珍贵的703号机于格洛莫夫
706、707之外的原型机都是新造的。第一架全新生产的苏-27M原型机是T-10M-3(703号),于1992年4月1日首飞,也是由KnAAPO制造。他的规格基本上与量产型同。同年9月,搭载热影像红外线及激光标定荚舱参加法茵堡航展,同时更名为苏-35。
1993到1994年,708到710号相继出厂,为苏-35的预量产机。1995年完成了711号与712号,用作新型航电、座舱界面等试验机。其中711号被装上N-011M相控阵雷达、AL-37FU矢量推力发动机、以及许多法国航电设备参与阿拉伯联合酋长国新世代战机竞标案,[1] 这就是名苏-37MR(或简称苏-37, MR表多用途)。苏-37
试飞中的711号机
试飞中的711号机
于1996年4月2日由佛罗洛夫首飞,7月31日于格洛莫夫试飞院首度公开。
711号机的AL-37FU于2000年达使用寿限,被以基本型AL-31F取代,由于飞控系统已经很进步的关系,因此虽无矢量推力但仍可执行许多超机动动作、无限制飞行等等。这架飞机于2002年底坠毁。
712号机原用于试验新的机载系统与座舱界面。后来曾投入苏-30MKI的雷达与发动机测试工作。[2]
后续发展
12架原型机有部分提供给俄罗斯空军试用。
以711号机为基础的三视图
以711号机为基础的三视图
1996年KnAAPO交付3架量产机给俄罗斯空军,编号86、87、88 。虽然数目不多,但这三架飞机让空军研究单位有使用高性能多用途战机的经验,对先进战术研究必有助益。此外,试验结果也发现,让这种单座机执行双座机的轰炸任务仍有困难,其中最主要的困难是飞行员不知要用什么武器,苏-27SM开始就增强了飞机选择武器的能力,期能减少飞行员负担。这三架飞机连同703与712号原型机于2003年7月起交付〝勇士〞特技表演队。按照俄罗斯空军新的规划,在第五代战机与苏-27SM、苏-30MK等4+代战机之间将由苏-35的大改型过渡。这种大改型称为苏-35BM。[3]
2设计特点
编辑
苏-35除了用三翼面
苏-35首架生产型901号机
苏-35首架生产型901号机
设计带来绝佳的气动力性能外,真正的重点在航电设备,提升自动化、计算机化、人性化、指管通情(C3I)能力等,与同时期西方开发中的新世代战机的航电设计理念相同。大幅提升航电性能的结果是重量增加,必须有其他改良才能避免机动性、加速性、航程的下降。因此除了以前翼提升操控性外,还装备更大推力的发动机,此外,主翼与垂尾内的油箱也予以增大,油箱总容积达13000公升,因而可达到近4000km的无外援航程。故苏-35无论在机动性、加速性、结构效益、航电性能各方面都全面优于苏-27S,而不像其他改型如苏-30般有取有舍。
外形设计
苏-35的外型整体而言非常
苏-35生产型四视图
苏-35生产型四视图
简洁,大部分天线、传感器都改为隐藏式。主空速管由机首移至原来副空速管处(座舱两侧),副空速管移至雷达罩后方。机首增长增厚,以安装更大的雷达及更多航电设备,侧面看去因而下倾的比苏-27更大。若不算苏-27S的空速管,则苏-35增长近1m,主要就是来自机首的增长。光电探测器移至风挡右侧,左侧则安装可伸缩空中加油管,光电球侧移一方面是为了多出空间安装加油管,另一方面也因让飞行员有了更好的视野。座舱两侧装有可收纳的夜间加油照明灯。垂直尾翼加大,以得到更好的偏航稳定性能。此外垂尾及其方向舵的形状也略为改变,在垂尾顶端,由苏-27的下切改成平直,是苏-35的重要识别特征。尾椎加粗,并将阻力伞由尾椎末端移至上方,使末端可以容纳后视雷达及较多航电设备。三翼面布局、无攻角限制、全数位飞控。
苏-35生产型尾部
苏-35生产型尾部
将原来的翼前缘延伸增大,并在其侧加装可分别操纵的前翼,其前缘后掠角53.5度,翼展6.43m,面积3平方米,偏转角+3.5到-51.5度,由LERX内的液压装置驱动。这个设计相当于在前段增加翼面积,加上前翼产生的涡流及优异的高攻角控制能力,提升了总升力、同时使升力中心前移,使得飞机更为灵巧,且转弯时阻力更低;更强的涡流流经翼根使得该处升力增加,因此在相同于苏-27的总升力条件下,翼根负荷较低,这意味着同样的结构强度能忍受更高的G值,再加上苏-35的结构亦强于苏-27S,故正常操作极限比基本型多约1G(达9.5至10G),是第一种公布正常极限达10G的战机。[4]
前翼设计是大幅提升苏-35运动性能的
苏-35验证型与量产型的区别
苏-35验证型与量产型的区别
两大关键之一(另一大关键是飞控系统)。上述众多优点最主要来自前翼涡流延缓失速的作用,该作用提高了失速攻角,也就是使升力系数达极大值的攻角提高;另外其前翼紧临主翼,与主翼产生近耦合效应故增大了升力系数曲线斜率(即同攻角时升力系数提高了),两种效应共同提高苏-35的升力性能,调整机首涡流下手就能增强高攻角稳定性并提升可用攻角,甚至解除螺旋等等。只要有适当的飞控指令,前翼便能提供这项服务。但是在后来飞控指令软件的满足不了前翼的复杂控制,苏-35量产型取消了前翼。[4]
座舱设计
2014年珠海航展上的苏35
2014年珠海航展上的苏35
苏-35开始使用玻璃化座舱,
苏-35验证型座舱设计布局
苏-35验证型座舱设计布局
也就是以大型单色CRT显示器取代多数传统仪表。不过不同的苏-35就有不同的配置,正面仪表的显示屏就有左右各一个的,也有两个大的在右,一个小的在左的,应为比较之用。此外,侧面仪表板也有几个显示屏。苏-37的座舱则更为干净利落,内有4个大型彩色显示器,几乎看不到传统仪表。他们显示飞行及导航信息、战术情报等。而显示屏功能可互换。机载电脑可以在作战时引导飞行员下一步动作,系统出错时也能指引飞行员除错,这些辅助讯息都是以荧幕显示或语音表示的。
HOTAS双杆操纵设计
两种不同的座舱设计布局
两种不同的座舱设计布局
,驾驶/武器杆位在座舱中央(苏-35)或右侧(苏-37),左侧置油门操纵杆及矢量推力操纵按键,飞行员可单单操纵右侧操纵杆而让飞机自动控制矢量推力,也可用左手手动控制之(通常他的矢量推力是服从线传飞控系统控制的)。座椅后倾29度以提升飞行员抗G能力。由于苏-35滞空时间更长,因此机上氧气携行量增加了,并设有食物及饮用水。[5]
动力系统
苏-35强化了航电系统及武器搭载能力,机体也放大,空重增至18400kg,
AL-41F1S(117C)发动机
AL-41F1S(117C)发动机
必须配备推力更大的发动机。计划之初预计装备起飞推力13000kg的AL-31F发动机改型。后来使用AL-35F,AL-35F增加了发动机进气口直径以增加进气量,并增加涡轮入口温度提升了发动机的推力,内部构造也稍作改良,最大军用推力8500kg,最大后燃推力约14000kg。后来又在AL-35F的基础上增加后燃器推力,使得最大军用推力仍为8500kg而最大推力增至14500kg,此即AL-35FM。苏-37则使用加装矢量喷嘴的AL-35FM,又称作AL-37FU 。[6]
AL-35FM含4级风扇、9级高压压气机、单级高压及单级低压涡轮,涡轮进口温度1700K+-,最大军用推力8500kg,最大后燃推力14500kg,
矢量喷嘴
矢量喷嘴
最小巡航耗油率约0.68~0.7kg /kgf‧hr+-;最大推力耗油率大于1.96kg/kgf‧hr,推重比8.7,重量约1600kg ,喷嘴活动部件寿命250小时(制动机构以钛取代钢后可达500hr )。矢量推力喷嘴为圆型截面的轴对称式,能上下偏转15度,偏转速率为每秒30度,由液压系统驱动(量产型改用燃油系统驱动),矢量推力控制、发动机控制与飞控系统整合在一起,飞控系统可以根据飞行条件自动控制喷嘴方向。除了自动控制,苏-37之飞行员也可以用手动控制,在飞行员左手边有个按键控制版,可以用按键的方式控制矢量推力, 然此系实验用途,在后来的苏-30MKI上,矢量控制已全部交由飞控系统。加装矢量推力后发动机增重100kg左右(量产型增重70kg )。[7]
机载武器
苏-35/37两翼各加一个外挂点,共有12个外挂点,采用多用途挂架可有14个外挂点。武器搭载量提升为8000kg,正常空战筹载则为1400kg。机翼外侧可挂短程的R-73空空导弹或电战荚舱。
理论上苏-35能发射所有俄制精确制导武器如Kh-29反舰导弹、KH-59巡航导弹、KH-31反辐射导弹与KAB-500、KAB-1500系列制导炸弹等。
包括R-27系列、R-73系列、R-77、KS-172等及Gsh-30-1单管30mm机炮。其配备方式如下:
10枚R-77及两个翼端荚舱。
8枚R-27或R-77或其混合及4枚R-73,此为正常空战配置。
同2,使用多用途挂架时,R-73可增为6枚或维持4枚但增加两个荚舱。
射程超过100km的R-27增程型或射程达400km对预警机的KS-172超远程空空导弹这类大型导弹挂于进气道下及机腹中线挂架。[5]
3基本数据
编辑
基本数据
尺寸
长度(单位:米)
21.9
身高(单位:米)
5.9
翼展(单位:米)
14.7
起飞重量(单位:公斤)
正常(2×RVV-AE + 2×R-73E)
25300
最大
34500
涡扇发动机 117S
数目(单位:个)
2
推力(单位:公斤)
14500
内部油箱容量(单位:公斤)
11500
最大载弹量(单位:公斤)
8000
爬高(单位:米)
18000
满油巡航范围(单位:公里)
作战半径
1580
转场航程
3600
转场航程,带有2个副油箱
4500
1000米高度、50%燃油的加速时间(单位:秒)
600公里/时 -> 1100公里/时
13.8
1100公里/时 -> 1300公里/时
8
最大爬升率(H = 1000米)(单位:米/秒)
≥280
最大速度:
200米高度(单位:公里/时)
1400
11000米高度(单位:马赫)
2.25
最大工作负荷(单位:G)
9
起降滑跑距离
标准起飞重量,全加力模式的滑跑距离(单位:米)
400-450
标准降落重量,使用减速伞、制动装置在跑道上的滑跑距离(单位:米)
650-700[8]
4性能比较
编辑
苏-27系列优异的飞行性能
达索阵风(Dassault Rafale)战斗机
达索阵风(Dassault Rafale)战斗机
多年来以被许多理论分析及飞行表演证实为当代飞机第一把交椅,拥有前翼及更先进飞控的苏-35自是青出于蓝。只有西方新代战机F-22、台风战斗机与阵风战斗机问世后动摇其地位。依据苏-35与台风战斗机、阵风战斗机的气动外型可大略掌握其气动特性差距趋势,经整理得如下结论。
瞬间机动能力方面:
在某个临界攻角(这个临界攻角大于苏-35的失速攻角而小于台风战斗机与阵风战斗机)以下苏-35超载性能较优,此攻角以上则刚好相反。
同上,就传统空战飞行方式而言,虽然苏-35的超载性能较好,但是指向性能可能逊于鸭式布局的台风战斗机与阵风战斗机。近距空战时,高指向性是最致命的飞行性能,因此在近战武器性能相当的前提下(例如阵风战斗机+MICA对上苏-35+R-73或是都只用机炮),台风战斗机与阵风战斗机有胜过苏-35的可能。
持续机动性能方面:
1G直线飞行时,苏-35在低次音速升阻比应较高,高次音速升阻比可能低于EF-2000、Rafale。
高超载时,因诱导阻力权重大为提高,次音速阻力几乎取决于诱导阻力,因此苏-35机动时升阻比应较高。
低超音速阶段(刚超过1.3马赫时),三角翼的超音速低阻优势尚不明显,且此时诱导、寄生阻力比重仍大,因此1G直飞与高超载时之气动效率比较仍可沿用前两项结论。音速提高则越来越有利于三角翼。
考虑推力之影响后,苏-35的可调进气道效率较高,在1.5~1.8马赫以上开始进气道占推重比大为提高,这将弥补苏-35高超音速气动效率的劣势(相对于三角翼)。
同样的,在了解苏-35与台风战斗机等的升阻比差异后,仍须考虑推重比方能更精确判定能量机动性:采传统飞行方式时,苏-35指向性应逊于推重比(约1.2)同级之对手如阵风战斗机,而持续机动能力与超载性能应优于阵风战斗机。苏-35可由过失速机动改善前者。即考虑过失速机动后,苏-35的整体空战机动能力应优于阵风战斗机。而与推重比较大之对手如台风战斗机(约1.4)相比苏-35指向性应较差,超载性能应该相当,而持续机动能力则难以判定。苏-35可由过失速机动改善前者。
因此苏-35的飞行性能与F-22以外之西方新世代战机相比仍属上乘,理论上拥有上流的持续机动能力,并可借过失速机动能力来弥补传统布局在指向性方面的先天劣势。但是推重比较低(空战推重比约1.2,F-22、台风战斗机则在1.4以上)及缺乏超音速巡航性能需依赖新发动机改良。整体而言应仅有F-22和台风战斗机在其之上。[9]
5总体评价
编辑
苏-35的前型苏-27S是苏联在大方向上追赶欧美航天技术的作品,在机械性能(机体结构、外型、引擎等)方面几乎已全面赶上甚至超越欧美,但在航电方面除了某些功能如探测距离、
苏-35各类线图
苏-35各类线图(6张)
拦截距离、抗干扰等赶上外,局部性能难与美国同期飞机(F-15A)比拟,此外,当苏-27S开始服役时,美国已开始装备F-15C等更新锐战机,因此尽管计算机计算出苏-27S整体超越F-15A,但倘若发生战争,苏联空军似乎仍没什么技术优势。[10]
苏-35的航电系统则在各个层面均赶上美四代半水平,甚至率先引入信息整合系统与专家界面等美四代水平,或许说它介于美规三代半与四代水平会更贴切些。按照苏联时期的计划,苏-35约在1995年前后投产,当时已服役的飞机均非其对手,这意味着欧美必然会因此加快新战机或改型战机的服役进度,而原本也预计同期投产的欧洲四代机就当时的技术条件而言亦无法完全压制。因此或许可以说,倘若苏联没有解体,那么约自1995年开始苏联空军便拥有技术上的优势或是说至少与欧美齐头直至F-22服役为止,这种现象在苏-27S服役时尚不存在。[11]
6外销中国
编辑
2012年起不断有传闻称中华
苏-35战斗机
苏-35战斗机
人民共和国计划向俄罗斯购买苏-35,但仅计划购买4架用以研究,而俄罗斯则希望至少出售48架。俄罗斯联邦军事技术合作局对此外销进行了确认,但未透露数量。
《汉和防务评论》揭露中俄于“确认协议”(Clearance Agreement)中协议交易24架。有一些评论称,中华人民共和国购买苏-35主要是希望获得其发动机技术,以进一步推动国产战斗机的研制,只是此协议中不包含技术转移。
法新社北京3月25日电,中俄签署重大军售框架协议。中俄合作建造4艘拉达级潜艇出售给中国。中国向俄采购24架苏35战机。这是新世纪以来中国首次向俄采购重大军事装备。[12]
美国詹姆斯敦基金会网站2013年10月1
苏-35
苏-35[13]
0日报道:中国和俄罗斯将签署一项合约,在2014年向中国出售先进的苏-35喷气式战斗机,这笔交易不会在2013年完成。如果买卖成功了,中国应对南海领土争端的影响可能立竿见影。除了加强中国在一场假设的冲突中的力量,苏-35的最大行程及燃料容量将允许中国人民解放军海军航空兵扩展对有争议地区的巡逻范围。购买苏-35反映出中国发现自己处于微妙的地位:既是俄式武器的大买主,又是这种武器的生产商。虽然自力更生一直对中国很重要,但已经被迅速获取先进武器系统的战略需求所取代。[13]
2014年10月14日据俄罗斯军工信使报道,副总理罗戈津称,中国和俄罗斯将在十一月份签署供应多功能战机苏-35的合同。
国际文传电讯社援引罗戈津的话,“11月将组成军事技术合作联合委员会。我认为届时将‘完成’这件事情。没有任何尖锐的或者未解决的问题,至少我没有听到。”
罗戈津说,现在就合同的“一些价格参数”达成了一致。
根据非官方数据,第一阶段中国计划采购24架苏-35战斗机。国际传文电讯报道称,并且中国不是想要为俄罗斯空军量产的飞机,而是适应了中国空军要求的飞机。[14] 媒体评论认为,中国采购苏-35战斗机的谈判可能接近完成。而UAC工作人员接受专访时提到的数量问题,很可能说明一点,中方在原来被披露的48架数量基础上,可能还决定在未来追加第二批次采购。[15]
H. 世界上最强大的2S7M式“马尔卡”自行榴弹炮,它究竟有多厉害
2S7M马卡尔自行榴弹炮是俄罗斯研制的一型203毫米口径的重型自行榴弹炮,整体战斗力非常强。而且其也是世界上最厉害的自行榴弹炮。之所以笔者这样说,原因其实非常简单,首先就是其口径非常大,203毫米的口径力压了世界上所有的自行榴弹炮。其次就是其射程非常远,达到了30公里。最后就是其维护和作战方面表现非常好。
最后就是这款自行榴弹炮的维护非常省时省力,这型自行榴弹炮的底盘使用的是坦克的地盘,能够做到后勤通用化。而且坦克的底盘对复杂路面的通过性非常强。沉重的坦克底盘也能一定程度上减轻火炮后坐力的影响。截至目前位置,俄罗斯军队已经转给了超过100门这型火炮。这型火炮重量约为65吨到70吨之间,备弹超过70发,而且每分钟能够发射2枚炮弹。火力还是非常强大的。
I. 地对地导弹
地地导弹是指从陆地发射攻击陆地目标的导弹。它由弹头、弹 国庆阅兵二炮方队的新型地地导弹
体或战斗部、动力组织和制导系统等组成。与导弹地面指挥控制、探测跟踪、发射系统等结构构成地地导弹武器系统。地地导弹携带单个或多个弹头,具有射程远、威力大、精度高等特点,已经成为战略核武器的主要组成部分。地地战术导弹携带核弹头或常规弹头,射程较进,用于打击战役战术纵深内的目标,是地面部队的重要武器。地地导弹的发射方式有地面和地下、固定和机动、垂直和倾斜、热发射或冷发射等区分。其最大射程远大上万公里,如地地洲际导弹;最小射程近至几十米,如地面发射的反坦克导弹[1]。
地地导弹是指从陆地发射打击陆地目标的导弹。按飞行弹道可分为地地弹道导弹和地地巡航导弹;按射程可分为洲际、远程、中程、近程地地导弹;按作战使用可分为地地战略导弹和地地战术导弹 。 地地战略弹道导弹通常携带单个或多个核弹头,射程远,威力大,命中精度高,用于打击各种战略目标。地地战术导弹携带常规弹头(战斗部)或核弹头(核战斗部),尺寸小,质量轻,射程近,机动性好,可用汽车、火车、飞机、舰船运输,陆地机动发射,用于打击战役战术目标。最早的地地导弹是德国在第二次世界大战末期使用的V-1导弹和V-2导弹。战后美国和前苏联等国在此基础上,研制了各种地地战术导弹,以及中程、远程和洲际地地战略导弹。地地导弹发展迅速,种类繁多,装备数量大。地 “烈火”-Ⅰ型地地导弹
地战略导弹是战略核武器的主要组成部分,地地战术导弹是地面部队的重要武器。地地导弹有的打击地面固定目标,有的打击地面活动目标;有的打击地面面(软)目标,有的打击地面(地下)点(硬)目标;可采用地面、地下、固定、机动、垂直、水平、倾斜及自力、外力等多种发射方式。地地导弹与机载、舰载导弹相比,定位容易,地面上发射点的位置、发射方位和重力异常等数据都可预先精确测定,能较好地保证导弹初始瞄准的精度,但机动性和生存能力不及机载、舰载导弹。地地导弹射程有的近至几十米,如地面发射的反坦克导弹,有的远达上万千米,如地地洲际弹道导弹。从导弹发射井发射的地地战略弹道导弹,由于阵地固定,平时易被对方侦察发现,其生存受到威胁。20世纪70年代,开始采取抗核加固措施来提高在核战争条件下的生存能力。
随着高科技的迅速发展,战场上的武器装备也在随之而变化。为适应新的战场形势的发展和变化,世界各国普遍重视发展远射程、大威力、高精度武器,特别是地对地战术导弹系统。到目前为止,世界上已有30多个国家装备了地对地战术导弹,其中第三世界国家中就有二十个国家部署了地对地战术导弹,有十几个国家拥有研制、生产地地战术导弹或导弹部件的能力。尤其是在最近一、二年里,各国对战术导弹的发展研究进入了一个高潮。首先是许多国家都加快了发展速度。例如,巴基斯坦的“哈特夫Ⅰ”、俄罗斯的SS-21“金龟子B”、印度的“普里特维”SS-150、阿根廷的“阿里克林”和埃及的“普鲁杰克特T”等地地战术导弹都是在这一、二年内开始装备部队的,另外还有十几个新型号也都是在这两年中首次列入研究计划的,如韩国的KSR100、俄罗斯的SS-21“金龟子C”、印度的“普里特维”SS-350和伊朗的改型CSS-7等。国外及地区的地地战术导弹发展现状 1.美国 按美苏中导条约的要求,美国仅剩下的“长矛”战术地地导弹也已于是1991年开始逐渐被美国的“陆军战术导弹系统”(ATACMS)所取代。在海湾战争中,“陆军战术导弹”首次投入战场使用。 它是美国现代化计划中第一部装备并投入战场使用的纵深火力武器系统。它的最大特点是通过改进后的M270式多管火箭炮进行发射,节省了“长矛”导弹原来的部队费用。另外由于这种武器系统具有从偏高炮目轴线性30°角发射导弹的能力,因此可以防止炮位侦察雷达对弹道进行外推,有利于发射阵地的隐蔽,从而提高了导弹系统的生存能力。美国新一代战术弹道导弹ATACMS正在继续进行的研制和改进项目主要是ATACMS-2和-2A导弹,另外还有用于ATACMS发射的新型高机动发射系统(HIMARS)、改进型火控系统(IFCS)和改进的发射器机械系统(ILMS)等。IFCS计划于1996年完成硬、软件研制,并在5月~8月进行3枚ATACMS导弹的发射试验;ATACMS-2型导弹的智能反装甲(BAT)弹头已于是1996年进入飞行试验阶段。目前,ATACMS包括-1、-1A、-2和-2A 4种改型,4种改型的推进和控制系统均相同,主要区别在于制导系统和战斗部的不同。ATACMS-1和-1A装有杀伤人员、破坏装备(AP AM)子弹,其中-1采用激光陀螺惯性制导系统,-1A则增加了GPS辅助制导装置; -2和-2A装置包括GPS在内的改进型制导系统,配有BAT子弹。ATACMS-1和-2为射程约150km的基本型,ATACMS-1A和-2A则为采用轻质量弹头的增程型,其射程超过300km。ATACMS-2型携带13个BAT子弹,BAT子弹弹长914.4mm,弹身直径139.7mm,翼展914.4mm,弹重19.96kg;采用红外和音响寻的器。对运动中的装甲集群,每一BAT子弹直接命中一辆坦克或装甲车。ATACMS-2A型装载6个改进型(P3I)BAT子弹,该子弹将采用毫米波或毫米波/红外双模寻的器,使其不仅可以攻击静止的装甲集群目标,而且具有攻击地地战术导弹发射车(TEL)的能力。美国已经广泛收集潜在的战术弹道导弹TEL多频谱红外数据,并研究相应的TEL红外图象分类、鉴别算法。1996年BAT弹头进行了4次飞机投放试验,从1997年7月开始,进行了一系列BAT弹头的工程研制飞行试验,按计划,1997年8月进行首次了ATACMS-2导弹的满载荷(13枚BAT子弹)抛撒试验。美国海军根据作战能力扩大到浅海及沿岸战区的需要,提出将ATACMS改型为一种海军战术导弹系统(NTACMS),用于从海上对地面的火力支援。1995年论证了潜艇发射ATACMS导弹的作战方案,并进行了登陆舰在海面发射ATACMS-1A导弹试验。1996年底,美国又成功地进行了舰载MK-41垂直发射系统发射ATACMS的试验,验证了海军舰上作战系统发射该导弹的能力。NTACMS最终将以MK-41舰上垂直发射系统代替目前ATACMS所用的M 270倾斜式发射系统。 2. 俄罗斯同美国一样,中导条约后俄罗斯只剩下“飞毛腿B”和SS-21“金龟子”两种战术导弹,但由于它们的射击精度远不能满足现代战场的需要,也逐渐被新研制的SS-21导弹和新型“飞毛腿”导弹所取代。目前,俄罗斯尚公布新型“飞毛腿”的正式名称,美国赋予它的代号是SS-X-26。由于北约的东扩俄罗斯将加速SS-X-26导弹的研制,并可能在两年内布署。1995年底到1996年初,俄罗斯SS-X-26导弹进行了一系列飞行试验,其首次飞行试验是在1995年10月25日。西方军事评论家推测,SS-X-26是在SS-23导弹基础上设计的新一代固体导弹,具有适应21世纪作战需要的高命中精度、强突防能力和能采用多种常规弹头等特点。SS-X-26导弹长7.3m,弹体直径0.92m,发射重量4600kg,弹头重量415~700kg,最大射程300~500km,装置在新型运输—竖起—发射车上。SS-X-26可能采用了以下新技术: ①精确制导技术 SS-X-26导弹的弹头较小,因此必须有非常高的命中精度,有报导称SS-X-26的精度甚至超过SS-21近程导弹的精度(CEP<35m)。为了达到高命中精度,俄罗斯可能采用的精度制导技术包括毫米波雷达主动末制导、利用GLONASS全球定位系统卫星提供的末制导、改进的惯性平台和复合制导技术。导弹在发射前将目标信息输入弹头内的计算机,机内储有地形图,高度表启动以后,计算机开始搜寻其储存的目标数据,同时数字传感器针对每一个存储的高度进行显示对比,由装在鼻锥部位的光学传感器搜索目标,并与计算机数据进行比较,一旦确定目标位置后,导引头随即将其锁定,并通过控制尾翼将弹头引向目标,达到准确的命中精度。 ②突防技术 为了对抗21世纪的战区导弹防御系统,SS-X-26具有较小的雷达反射截面,可能采用特殊形式的弹道或末段机动飞行,以及诱饵等突防措施。 ③子母弹技术SS-X-26非常可能装备常规弹头,如集束式子母弹头、燃料空气弹头、打击加固工事的钻地弹头和反雷达的电磁波脉冲弹头等。俄军用以取代原型SS-21“金龟子”导弹的改进型SS-21导弹共有两种,一种为本国装备,另一种供出口专用。本国SS-21导弹可配用6种战斗部,除两种核战斗部外,还可配用高爆炸药战斗部、空爆人员杀伤战斗、高爆电脉冲战斗部长对付战场雷达或海军雷达的反雷达寻的战斗部。供出口用的SS-21导弹可配用两种战斗部,一种是具有50 颗杀伤子弹的子母弹战斗部,另一种是高爆炸药破片杀伤战斗部。 3. 法国:法国地地战术导弹装备到军一级,1974年开始装备的五个“普鲁东”准战略核导弹团从1992年开始逐渐由法国新研制的“哈德斯”导弹取代,但这种取代并不是一对一的,原来的五个“普鲁东”导弹团由2个“哈德斯”导弹团代替。一个是第15炮兵团,另一个是第3炮兵团。到1994年,“普鲁东”导弹已基本上全部退出现役。“哈德斯”导弹的射程为460km,可配用核裂变和强辐射战斗部。法国原计划装备80~120枚“哈德斯”导弹,但由于东西方局势缓和,加上美国和俄罗斯取消部署在欧洲的战术核武器,所以法国于1992年5月底彻底决定中止生产“哈德斯”短程核导弹。法国目前对“哈德斯”的使用原则是:只贮存,不再部署。4. 印度自80年代以来,印度就十分重视国产导弹的研制和发展。他们认为导弹是印度国土防空系统和对付外来威胁的有力武器。 海湾战争后,印度更加认识到导弹 在现代战争中的重要地位和作用。明显加快了国产导弹的研制与发展进程,并取得了重大成就。印度自行研制的SS-150“普里特维”战术导弹已于1993年末装备印度陆军,随后SS-250“普里特维”导弹也于1994年开始装备部队。SS-150“普里特维”导弹是一种装有两级液体燃料发动机的弹道导弹,射程为150km,战斗部重500kg,经过改进后的SS-250“普里特维”导弹战斗部重量被减为250kg,射程提高到250km。印度声称,这种导弹的特点是速度快、精度高,而且它的杀伤威力比原苏联的“飞毛腿B”、美国的“长矛”或以色列的“杰里克Ⅱ”导弹的杀伤力都大。 5. 台湾随着台湾军队导弹技术的不断发展,导弹将取代传统式武器成为未来战场的主宰,而且导弹和反导弹作战将会成为未来海峡地区局部战争的独立作战方式,台湾通过引进美国和以色列等国的先进军事技术,现已具备了研制多种战术导弹的能力,除在80年代装备部队的“青峰”地地战术导弹外,还先后制造了“雄风”系列舰载、岸基反舰导弹和“天弓”系列地空导弹。“青峰”地地战术导弹采用的是预贮式液体燃料发动机,射程为 120km。据说它与美国的MGM-52“长矛”导弹相似,只是弹径略大一些,达600mm,弹长7m,总重量1400kg,用主动雷达制导。6. 朝鲜劳动-1导弹是在飞毛腿-B导弹的技术基础上由朝鲜自行研制的中程弹道导弹,该型号为单级液体推进,其推进剂质量比飞毛腿-B增加了近2倍,而有效载荷质量仅为飞毛腿-B的一半,所以射程可以达到800~1000km。劳动-1导弹的制导控制系统与飞毛腿-B相似,采用3个陀螺仪和4个空气舵。1993年,劳动-1在进行生产型飞行试验的准备。因为劳动-1所进行的技术改进比较简单,近几年内有可能部署。
总的来看,目前国外及一些地区的战术地地导弹主要有以下特点: 1. 注重发展常规战斗部由于近些年来,常规性局部战争时有发生,而且在许多战争中都使用了常规战术导弹,如阿以战争、阿富汗战争、两伊战争和海湾战争。特别是在两伊战争和海湾战争中,常规战术导弹的使用对战争起到了不可估量的作用。因此,近些年来各国都把研制常规性战术导弹作为未来武器发展的重要项目来抓。例如美国,除了为“陆军战术导弹”配用了内装950颗杀伤子弹的双用途子母弹战斗部以外,目前仍在为该导弹研制各种反装甲战斗部和其它战斗部。俄罗斯也为改进型SS-21“金龟子”和新型“飞毛腿”导弹配制了多种常规战斗部。另外印度、巴基斯坦、以色列、伊朗等许多国家也都研制并装备了常规战术弹道导弹。 2. 增大射程增大射程、提高导弹打击纵深目标的能力是近些年来发展战术导弹的又一特点。增大地地战术导弹的射程,不但可保证导弹压制和摧毁野战火炮射程以外的重要目标,同时在战略上还具有无法估量的威慑作用。如在近几年内,印度和巴基斯坦竞相增大各自的“普里特维”和“哈特夫”地地战术导弹的射程,其目的就是要达到威慑作用和相互制约作用。另外,美国90年代装备的“陆军战术导弹系统”的射程为150km,已经比原来的“长矛”常规战术导弹的射程提高了78km,但经过海湾战争的实战考验后,美国认为它的射程仍不能满足现代化战争的需要,进而又将对第一阶段战斗部的“陆军战术导弹”进行改进。据说改进后的导弹射程是原来的两倍。再者法国新装备的“哈德斯”战术导弹的射程也比原来装备的“普鲁东”导弹的射程提高了4倍。 3. 强化基本型并使之系列化。所谓基本型是导弹系列的基础型,只有基础好,才能具有发展潜力。强化基本型就是在研制发展初期,论证和选择好导弹的总体性能,只有具备良好性能的导弹,才能有效地配备各种战斗部。美国和俄罗斯在发展地地战术导弹时,都很重视基本型导弹的综合性能。他们采用较为成熟的技术,在具有良好性能的基本型导弹的基础上,或是增大射程,或是配用各种不同的战斗部,使之成为一个导弹系列。例如,美国的“陆军战术导弹”就是在ATACMS-1的基础上发展了ATACMS-1A、ATACMS-2、ATACMS-2A以及舰上发射的“陆军战术导弹”,俄罗斯在SS-21“金龟子”地地战术导弹的基础上发展了改进型和最新型。
1. 采用多种手段,提高命中精度和突防能力:命中精度对地地战术导弹,特别是对常规导弹来说是至关重要的。有人曾作过计算,如果是导弹的精度提高一倍,其战斗部的威力就可提高8倍。所以近年来世界各国都非常重视提高地地战术导弹的命中精度,且新装备的战术导弹较之以前老式型号导弹的最大区别之一就是命中精度高。如法国的“哈德斯”命中精度比“普鲁东”提高了50~200m。美军的“陆军战术导弹系统”的精度也比“长矛”导弹提高了3~4倍,导弹的圆概率偏差仅为50m。 海湾战争后,美国开始研制改进型“陆军战术导弹”,其中一项重大改革就是计划为导弹配用一种全球定位系统接收机,以达到更高的精度。俄罗斯最近公开的新型“飞毛腿”导弹即“飞毛腿B2”型也是一种高精度导弹,它所采用的是先进的信息处理手段。另外,从俄罗斯SS-21导弹的发展过程也不难看出,提高导弹的命中精度是目前,乃至今后发展地地战术导弹的又一主要趋势。至今为止,俄罗斯已为SS-21导弹研制了三种型号的导弹,即原型、改型和最新型号。虽然这三种型号导弹的射程一个比一个远,但精度却一个比一个更高。据说最新型号SS-21导弹的射已达185km,其精度则小于30m。海湾战争的经验告诉我们,地地战术导弹如果没有准确的命中精度,就不能将它的威慑作用转化为巨大而有效的杀伤破坏能力,就不能真正成为杀手锏。 海湾战争中,伊拉克发射的“飞毛腿”或“侯赛因”导弹,虽然85%左右自毁或遭到拦截,但仍然有15%的导弹没有自毁或遭拦截,如果这15%的导弹都能准确地命中攻击的目标,肯定会对战争的进程和结局产生重大影响。但是,由于该导弹的制导精度太低,这15%的导弹大部分都未击中预定的目标,都未起到预定的作战效果。因此,提高地地战术导弹的命中精度将成为地地战术导弹今后发展的重点。另一个重要问题是地地战术导弹的突防问题。如果说海湾战争中,伊拉克的“飞毛腿”、“侯赛因”导弹 给多国部队造成的威慑给人留下深刻印象,那么美国的“爱国者”导弹拦截“侯赛因”导弹的情景给人留下的印象也同样是深刻的。尽管“爱国者”导弹的拦截概率并没有国外吹嘘的那么高(达85%以上),据美国国防部专家们战后分析,“爱国者”导弹实际上只成功地拦截了一枚“侯赛因”导弹,其余的都是因为“侯赛因”导弹本身设计不合理,再入时自己爆炸的。但是,地地战术导弹毕竟是可以拦截的,这一事实已引起各国政府和专家的高度重视。美国在战后,立即把战略防御的重点调整到对地地战术导弹的防御方向,并制定了各种防御方案和用于防御地地战术导弹的导弹发展计划,譬如发展“爱国者”导弹的第三阶段改进型,即“爱国者II”PAC-3导弹;加速与以色列联合发展“箭”式反导弹导弹等。英国、法国等也都开始了防地地战术导弹的技术和武器的发展计划。 目前世界上大约有13个国家(地区)在研制反地地战术弹道导弹的武器(反导地空导弹、激光武器和超高速炮)。因此,可以预见,在未来的战争中地地战术导弹遭拦截的概率将大大增加。这样就迫使人们考虑,要使地地战术导弹在未来的战争中继续发挥它杀手锏的作用必须要采取突防措施,提高其突防能力。目前各国现役中的地地战术导弹,除美国新装备的“陆军战术导弹”采用子弹药带制导的集束式子母弹头有较好的突防能力外,都未采取任何突防措施,所以采取突防措施,提高突防能力将 是今后改进或新发展的地地战术导弹发展的重要趋势。 2. 提高机动性、隐蔽性,缩短反应时间提高导弹的机动性、隐蔽性,以提高导弹的战场自下而上的能力。目前,在装备有地地战术导弹的国家中,除美国、俄罗斯和法国陆军装备的地地战术导弹采用全机动发射方式外,不少装备第二代地地战术导弹的国家都采用固定阵地或预先准备的阵地发射与机动发射相结合的发射方式,譬如伊拉克的“飞毛腿”或“侯赛因”导弹就是采用后一种发射方式。海湾战争的经验告诉我们,地地战术导弹在现代化战争条件下采用固定阵地或预先准备的阵地发射方式是不可取的。海湾战争中,在多国部队空中地毯式的轰炸下,伊拉克固定的和预先准备的“飞毛腿”导弹阵地很快就全部被摧毁。而隐蔽、机动发射的“飞毛腿”导弹及其发射系统大部分都保留下来,并能在战争的全过程中不时地向以色列和沙特阿拉伯等海湾国家发起攻击,直至战争结束,机动的“飞毛腿”导弹系统也没有全部被摧毁。 因此,机动、隐蔽的发射方式将是提高地地战术导弹在现在和将来战场上生存能力的最佳方案,它将被各国陆军所接受和采用,这也必将促使地地战术导弹系统向更简化、更机动的方向发展。能在需要的地域及时对付各种事变、必要时可以深入敌人领土纵深展开常规反进行作战、要求战术导弹具有高度的机动能力和尽量缩短反应时间,以适应地面部队快速机动作战的需要。任何一种导弹系统地面设备的组成,在很大程度上都取决于导弹,发动机类型和制导系统等因素。地面设备的完善程度对导弹系统的战斗准备、特别是对机动性有很大影响。未来的战术导弹趋向于采用便于机动发射的固体火箭发动机,由一辆自行式多功能车完成运输、测试、发射等任务。武器系统的指挥、控制、瞄准和发射实现自动化,缩短反应时间。 3. 导弹与现代化的侦察、指挥和通信手段相结合:地地战术导弹与先进的目标侦察系统和自动化射击指挥系统网络结合起来,成为实时或近于实时的攻击系统,可以大大提高战术导弹的作战效果。在海湾战争中,美军利用空间卫星、机载侦察与指挥控制系统与地面侦察与指挥系统组成了不同级别的战略与战术C3I网络,通过C3I网络系统,战场指挥官可随时了解敌军的战略、战术目标情况,使战场上武器的攻击精度和反应速度大幅度提高。与此相比,伊拉克军队由于C3I系统不健全、质量差,致使各级部队敌我情况不明、指挥失灵、通信中断、行动严重失控,处处陷入被动挨打的局面。由此不难看出,即使拥有大量的兵力和武器,如果不与先进的侦察、指挥与通信手段相结合,最终也难以发挥其作用,这一点在海湾战争结束后已经引起了许多国家高度重视。 4. 发展多种战斗部,突出发展先进的子母弹战斗部为了提高地地战术导弹的作战能力,各国在研制新一代地地战术导弹时都将战斗部作为发展的重点,并努力为研制的导弹配用多种战斗部。根据现代战场大规模集群装甲作战的特点。战术导弹战斗部的发展重点将是子母弹战斗部,其中包括双用途子母弹战斗部、反装甲车辆战斗部和反坦克布雷战斗部等。如美国计划为“陆军战术导弹”配用的5种战斗部,即反装甲型、反硬目标型、反跑道型、布雷型和目前美军装备的双用途型几乎都是子母弹型战斗部。另外,俄罗斯的改进型SS-21导弹同样也可以配用多种战斗部,其中包括核战斗部,据说可能还要将一种新研制出来的SPBE-D传感器引爆子弹用于SS-21战术导弹的反装甲子母弹战斗部,用以攻击装甲集群目标。
弹道导弹面临的主要问题之一是突防技术落后于反导技术,因此,突防技术的迅速突破是提高弹道导弹生存能力重要手段.该文研究一种由机动变轨技术演化而来的跳跃式弹道技术.从延缓导弹防御系统的早期预警时间着手,将传统弹道导弹的抛物线弹道中段设计成有多个波峰的跳跃式弹道,使得探测系统在导弹再入大气层之前,很难准确探测和计算导弹的落点,使得防御系统防不胜防,从而大大地提高了弹道导弹的突防能力.以美国潘兴Ⅱ导弹为原型,增加可两次点火的末级发动机,改装成具有跳跃能力的地地弹道导弹;首先,根据任务需求,建立了导弹的气动模型,并建立了弹头再入时高超声速气动模型;其次,建立了导弹推进系统模型,前两级采用了固体火箭发动机,第三级采用了固—液组合火箭发动机,并在总体方案要求下,对发动机喷管和外形进行了设计;第三部分,建立了导弹质点弹道模型,设计了一条跳跃式弹道,并对跳跃式弹道进行了优化设计;最后,对导弹进行了突防能力分析,从分析的结果可以看出,跳跃式弹道的突防能力比常规的抛物线弹道要强。