① 求 欧拉 生平经历及其贡献
莱昂哈德·欧拉(Leonhard Euler ,1707年4月15日~1783年9月18日),瑞士数学家、自然科学家。1707年4月15日出生于瑞士的巴塞尔,1783年9月18日于俄国圣彼得堡去世。欧拉出生于牧师家庭,自幼受父亲的影响。
13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把整个数学推至物理的领域。
他是数学史上最多产的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、变分法等的课本,《无穷小分析引论》、《微分学原理》、《积分学原理》等都成为数学界中的经典着作。
欧拉对数学的研究如此之广泛,因此在许多数学的分支中也可经常见到以他的名字命名的重要常数、公式和定理。
欧拉丰富的头脑常常为他人做出成名的发现开拓前进的道路。例如,法国数学家和物理学家约瑟夫·路易斯·拉格朗日创建一方程组,叫做“拉格朗日方程”。此方程在理论上非常重要,而且可以用来解决许多力学问题。
但是由于基本方程是由欧拉首先提出的,因而通常称为欧拉—拉格朗日方程。一般认为另一名法国数学家让·巴普蒂斯·约瑟夫·傅立叶创造了一种重要的数学方法,叫做傅里叶分析法,其基本方程也是由伦哈特·欧拉最初创立的,因而叫做欧拉—傅里叶方程。
② 莱昂哈德·欧拉/Леонард Эйлер
ИМЯ ЗАМЕЧАТЕЛЬНОГО учёного-математика Леонарда Эйлера известно во всём мире. Школьники и студенты всех стран до сих пор изучают геометрию и алгебру по учебникам, созданным на основе работ Эйлера.
Эйлер родился и получил образование в Германии. Когда русский царь Пётр Первый основал в Петербурге Академию наук, он пригласил совсего мира первоклассных учёных. Эйлер тоже получил приглашение. На родине его предупреждали, что Россия - огромная непонятная страна, где очень холодно. Но Эйлер решил ехать в Петербург.
Россия стала второй родиной для Эйлера. Здесь он мог спокойно работать и приносить пользу науке. За четырнадцать лет жизни в Петербурге Эйлер написал восемьдесят крупных работ. В 1736 году он издал большую работу «Механика», которая сделала его имя известным во всём мире.
В 1740 году в Германии была создана Академия наук, и Эйлер вернулся домой. С 1741 по 1766 год он жил в Берлине. Но он не забыл свою вторую родину - Россию.
Многие свои работы он печатал в Петербурге, покупал для Петербургской академии книги и инструменты. В его доме подолгу жили молодые русские учёные. Находясь в Германии, Эйлер постоянно заботился о развитии науки в России и о престиже русских учёных.
В 1766 году Эйлер снова приехал в Петербург поприглашению Академии наук и остался здесь навсегда. Несмотря на болезнь (Эйлер потерял зрение), он продолжал много работать. В эти годы он написал много важных работ, в том числе работу «Элементы алгебры», которая была сразу переведена намногие языки мира.
Эйлер умер в 1783 году в Петербурге. Здесь выросли пятероего детей и тридцать восемь внуков. Потомки великого учёного до сих пор живут в России. А на стене одного из петербургских домов висит мраморная доска с портретом учёного и словами: «Здесь жил с 1766 по 1783 год Леонард Эйлер, член Петербургской Академии наук, крупнейший математик, механик и физик».
I. Ответьте на вопросы.
1. Почему имя Леонарда Эйлера известно в мире?
2. Как Эйлер оказался в России?
3. О чём его предупреждали друзья?
4. Какая работа сделала имя Эйлера известным во всём мире?
5. Когда Эйлер вернулся в Германию?
6. Как Леонард Эйлер приехал в Россию во второй раз?
7. Почему Эйлер заботился о развитии науки в России?
II. Понятны ли вам выражения: потерял зрение, мраморная доска, вторая родина?
III. Нравятся ли вам точные науки: математика, физика ит. д.?
IV. Есть ли (было ли) у вас представление, что Россия - далёкая и непонятная страна, где очень холодно?
译文:
杰出的科学家,数学家莱昂哈德·欧拉(Leonard Euler)的名字享誉全球。各个国家的学生仍用基于欧拉的着作的教科书中学习几何和代数。
欧拉在德国出生并接受教育。俄国沙皇彼得一世在圣彼得堡成立科学院后,他邀请了来自世界各地的一流科学家。欧拉也收到了邀请。在国内,他被警告说俄罗斯是一个巨大的,不可理喻的国家,那里非常寒冷。但是欧拉决定前往圣彼得堡。
俄罗斯成为欧拉的第二故乡。在这里,他可以安静地工作和研究。住在圣彼得堡的十四年中,欧拉创作了80部主要着作。 1736年,他出版了伟大的着作《力学》,使他的名字闻名世界。
1740年,德国科学院成立,欧拉回到家。从1741年到1766年,他住在柏林。但是他并没有忘记他的第二故乡——俄罗斯。
他在圣彼得堡出版了许多作品,为圣彼得堡学院购买了书籍和器具。俄罗斯年轻的科学家们在他的房子里住了很长时间。在德国的时候,欧拉一直在关注俄罗斯科学的发展以及俄罗斯科学家的声望。
1766年,应科学院的邀请,欧拉返回圣彼得堡,并永远留在这里。尽管病了(欧拉失去了视力),他仍然继续努力。在这些年里,他写了许多重要的着作,包括着作《代数元素》,该着作立即被翻译成世界上的许多语言。
欧拉于1783年在圣彼得堡去世。他的五个孩子和38个孙子在这里长大。这位伟大科学家的后代仍然住在俄罗斯。在圣彼得堡一栋房屋的墙壁上悬挂着一块大理石牌匾,上面刻着科学家的肖像,上面写着:“莱昂哈德·欧拉,圣彼得堡科学院院士,着名的数学家,力学和物理学家,于1766年到1783年住于此处。”
单词:
первоклассный 最好的
предупреждать 预告;警告
постоянно 经常
престиж 威望
потомок 后代
мраморный 大理石的
③ 欧拉那个国家的人
瑞士人啊
欧拉被公认为人类历史上成就最为斐然的数学家之一。在数学及许多分支中都可以见到很多以欧拉命名的常数、公式和定理,他的工作使得数学更接近于现在的形态。他不但为数学界作出贡献,更把数学推至几乎整个物理的领域。此外欧拉还涉及建筑学、弹道学、航海学等领域。瑞士教育与研究国务秘书Charles Kleiber曾表示:“没有欧拉的众多科学发现,今天的我们将过着完全不一样的生活。”法国数学家拉普拉斯则认为:读读欧拉,他是所有人的老师
数学史上公认的4名最伟大的数学家分别是:阿基米德、牛顿、欧拉和高斯。阿基米德有“翘起地球”的豪言壮语,牛顿因为苹果闻名世界,高斯少年时就显露出计算天赋,唯独欧拉没有戏剧性的故事让人印象深刻。
然而,几乎每一个数学领域都可以看到欧拉的名字——初等几何的欧拉线、多面体的欧拉定理、立体解析几何的欧拉变换公式、数论的欧拉函数、变分法的欧拉方程、复变函数的欧拉公式……欧拉还是数学史上最多产的数学家,他一生写下886种书籍论文,平均每年写出800多页,彼得堡科学院为了整理他的着作,足足忙碌了47年。他的着作《无穷小分析引论》、《微分学》、《积分学》是18世纪欧洲标准的微积分教科书。欧拉还创造了一批数学符号,如f(x)、∑、?驻、i、e等等,使得数学更容易表述、推广。并且,欧拉把数学应用到数学以外的很多领域。
1707年欧拉生于瑞士巴塞尔,13岁入读巴塞尔大学,15岁大学毕业,16岁获硕士学位,19岁开始发表论文,26岁时担任了彼得堡科学院教授,约30岁时右眼失明,60岁左右完全失明,欧拉1783年76岁在俄国彼得堡去世。在失明后,他仍然以口述形式完成了几本书和400多篇论文,解决了让牛顿头痛的月离等复杂分析问题。
法国大数学家拉普拉斯曾说过一句话——读读欧拉,他是所有人的老师。中国科学院数学与系统科学研究院研究员李文林表示:“欧拉其实是大家很熟悉的名字,在数学和物理的很多分支中到处都是以欧拉命名的常数、公式、方程和定理,他的探索使得科学更接近我们现在的形态。”
他让微积分长大成人
恩格斯曾说,微积分的发明是人类精神的最高胜利。1687年,牛顿在《自然哲学数学原理》一书中首次公开发表他的微积分学说,几乎同时,莱布尼茨也发表了微积分论文,但牛顿、莱布尼茨创始的微积分基础不稳,应用范围也有限。18世纪一批数学家拓展了微积分,并拓广其应用产生一系列新的分支,这些分支与微积分自身一起形成了被称为“分析”的广大领域。李文林说:“欧拉就生活在这个分析的时代。如果说在此之前数学是代数、几何二雄并峙,欧拉和18世纪其他一批数学家的工作则使得数学形成了代数、几何、分析三足鼎立的局面。如果没有他们的工作,微积分不可能春色满园,也许会打不开局面而荒芜凋零。欧拉在其中的贡献是基础性的,被尊为‘分析的化身’。”
中国科学院数学与系统科学研究院研究员胡作玄说:“牛顿形成了一个突破,但是突破不一定能形成学科,还有很多遗留问题。”比如,牛顿对无穷小的界定不严格,有时等于零有时又参与运算,被称为“消逝量的鬼魂”,当时甚至连教会神父都抓住这点攻击牛顿。另外,由于当时函数有局限,牛顿和莱布尼茨只涉及到少量函数及其微积分的求法。而欧拉极大地推进了微积分,并且发展了很多技巧。
“在分析之前,数学主要是解决常量、匀速运动问题。18世纪工业革命时,以蒸汽机纺织机等机械为主体技术得到广泛运用,但如果没有微积分、没有分析,就不可能对机械运动与变化进行精确计算。”李文林表示,到现在为止,微积分和微分方程仍然是描写运动的最有效工具,教科书中陈述的方法,不少属欧拉的贡献。更重要的是,牛顿、莱布尼茨微积分的对象是曲线,而欧拉明确地指出,数学分析的中心应该是函数,第一次强调了函数的角色,并对函数的概念作了深化。
变分法来源于微积分,后来由欧拉和拉格朗日从不同的角度把它发展成一门独立学科,用于求解极值问题。而变分学起源颇富戏剧性——1696年,欧拉的老师、巴塞尔大学教授约翰·伯努利提出这样一个问题,并向其他数学家挑战:设想一个小球从空间一点沿某条曲线滚落到(不在同一垂直线上的)另外一点,问什么形状的曲线使球降落用时最短。这就是着名的“最速降线问题”,半年之后仍没人解出,于是伯努利更明确地表示“即使是那些对自己的方法自视甚高的数学家也解决不了这个问题”。有人说他在影射牛顿,因为伯努利是莱布尼茨的追随者,而莱布尼茨和牛顿正因为微积分优先权的问题在“打仗”,并导致欧洲大陆和英国数学家的分裂。
当时牛顿任伦敦造币局局长。有一天他收到一个法国朋友转寄的“挑战书”,于是吃过晚饭后挑灯夜战,天亮前解了出来,匿名发表在剑桥大学《哲学会刊》。虽是匿名,但约翰·伯努利看到之后惊呼:“从这锋利的爪我认出了这头雄狮。”后来伯努利兄弟和莱布尼茨也都解出了这个问题,发表在同一期刊物上。
在这个问题中,变量本身就是函数,因此比微积分的极大极小值问题更为复杂。这个问题和其他一些类似问题的解决,成为变分法的起源。欧拉找到了解决这类问题的一般方法,教科书中变分法的基本方程就叫欧拉方程。
欧拉13岁上大学时,约翰·伯努利已经是欧洲很有名的数学家,伯努利后来对欧拉说,“我介绍高等分析的时候,它还是个孩子,而你正在将它带大成人。”
全才数学家
李文林说:“除了分析,很多数学领域都绕不开欧拉的名字。如数论,高斯说数学是科学的皇后,而数论是数学的皇后,其难度和地位可想而知。”代数数论的形成和费马大定理有很深的关系。费马17世纪提出的一个猜想——方程xn+yn=zn,当n≥3时没有整数解。费马猜想也称费马大定理,费马在提出这一猜想的同时,在纸边写了一句话宣称:“我已找到了一个奇妙的证明,但书边空白太窄,写不下。”于是费马的证明已成千古之谜。此后经过300年,直到1993年费马大定理才被英国数学家最终解决。整个18世纪,数学家们都想解决这个猜想,但只有欧拉作出了唯一的成果,证明了n=3的情况,成为费马大定理研究的第一个突破。
欧拉对费马大定理的证明是在1753年给哥德巴赫的信中首次说明的,1754年正式发表。两人经常通信讨论问题,哥德巴赫猜想的雏形也是在哥德巴赫写给欧拉的信中首先提出,欧拉在回信中进一步明确。
欧拉是解析数论的奠基人,他提出欧拉恒等式,建立了数论和分析之间的联系,使得可以用微积分研究数论。后来,高斯的学生黎曼将欧拉恒等式推广到复数,提出了黎曼猜想,至今没有解决,成为向21世纪数学家挑战的最重大难题之一。
“在几何方面,欧拉解决了哥尼斯堡七桥问题,这也成为图论、拓扑学的滥觞。”李文林说。哥尼斯堡曾是德国城市,后属苏联。普雷格尔河穿城而过,并绕流河中一座小岛而分成两支,河上建了7座桥。传说当地居民想设计一次散步,从某处出发,经过每座桥回到原地,中间不重复。李文林说:“这就是今天的‘一笔画’问题,但在当时没人能解决。欧拉将这个问题变成一个数学模型,用点和线画出网络状图,证明这种走法不存在,解决了哥尼斯堡七桥问题。对此类问题的讨论研究,事实上引导了图论和拓扑学的发展。”
拓扑学中的欧拉示性数也溯源于欧拉1752年提出的关于凸多面体的一条定理:
在一凸多面体中,顶点数-棱边数+面数=2。
陈省身曾指出欧拉示性数是很多问题和解决办法的来源,对几何学的影响是根本性的。李文林说:“因为数学好,欧拉得以解决很多其他领域的问题。物理、力学、天文学、航海、大地测量等等到处都有欧拉的贡献,他是典型的全才数学家。牛顿、莱布尼茨发明的微积分可以说是‘原生态’,而欧拉18世纪写的文章我们现在依然能读,可以说欧拉等人使得数学特别是分析向现代形式发展。”
最多产的数学家
欧拉是历史上最多产的数学家。瑞士自然科学基金会组织编写《欧拉全集》,计划出84卷,每卷都是4开本(一张报纸大小)。如果按每本300页计算,欧拉从18岁开始每天得写1张半纸。然而这些只是遗存的作品,欧拉的手稿在1771年彼得堡大火中还丢失了一部分。欧拉曾说他的遗稿大概够彼得堡科学院用20年。但实际上在他去世后的第80年,彼得堡科学院院报还在发表他的论着。
“天才在于勤奋,欧拉就是这条真理的化身。”李文林表示,“很多科学家都很勤奋,而欧拉最为典型。他失明后的十多年都是在完全看不见的情况下作研究。欧拉心算能力很强,可以通过口述让别人记录。有一次欧拉的两个学生算无穷级数求和,算到第17项时两人在小数点后第50位数字上发生争执,欧拉这时进行心算,迅速给出了正确答案。”
“高斯的神童故事虽然有趣,但并不是每个人都是神童。即使是身为神童的高斯,其勤奋也是出名的。可以说凡有大成就的数学家必有大勤奋。”李文林举例说,被誉为“现代分析之父”的德国数学家魏斯特拉斯也是异常勤奋。大学毕业后他在一所偏僻的中学任教14年,教数学、德语、书法、体育,每天晚上以惊人的毅力坚持研究,当时工资很低,连投稿的邮费都没有。后来由于偶然的机会他的研究论文被德国数学家克莱尔创办的数学杂志发表出来(克莱尔杂志以帮助没出名的年轻学子发表创新成果而着称),震惊了欧洲科学界。
胡作玄认为,欧拉的成功说明了一个人的潜能。“高斯曾说,要像欧拉那样做,我的眼睛也要瞎了。一个人要想做事是没有问题的,只是现在社会比较复杂,我们应该为科学而科学,为艺术而艺术。”
除了做学问,欧拉还很有管理天赋,他曾担任德国柏林科学院院长助理职务,并将工作做得卓有成效。李文林说:“有人认为科学家尤其数学家都是些怪人,其实只不过数学家会有不同的性格、阅历和命运罢了。牛顿、莱布尼茨都终身未婚,欧拉却不同。”欧拉喜欢音乐、生活丰富多彩,结过两次婚,生了13个孩子,存活5个,据说工作时往往儿孙绕膝。他去世的那天下午,还给孙女上数学课,跟朋友讨论天王星轨道的计算。突然说了一句“我要死了”,说完就倒下,停止了生命和计算。
回顾欧拉的一生,李文林认为:“虽然他20岁离开瑞士,一直没有回去过,但他却是一个爱国者,至死没有改变国籍。所以现在我们还能说他是瑞士数学家。”
“牛顿、莱布尼茨、欧拉、拉格朗日、拉普拉斯都是全面的数学家。后来随着科学的发展,全才越来越少,有人说庞加莱也许是最后一个。”但是数学并不会因此枯萎,李文林说:“18世纪末曾有一种悲观主义在数学家中蔓延,连拉格朗日这样的大数学家都认为数学到头了,但事实相反,19世纪初非欧几何的发现、群论的创立以及微积分严格化的突破,使数学获得了意想不到的蓬勃发展。现代数学,特别是跟计算机结合起来之后,肯定还会有新的形态。”
④ 求欧拉的传记!
欧拉,L.(Euler,Leonhard)1707年4月15日生于瑞士巴塞尔;1783年9月18日卒于俄国圣彼得堡.数学、力学、天文学、物理学.
欧拉的祖先原来居住在瑞士东北部博登湖(康斯坦斯湖)畔的小城——林道.16世纪末,他的曾祖父汉斯·乔治·欧拉(HansGeorg Euler)带领全家顺莱茵河而下,迁居巴塞尔.这个家族几代人多为手艺劳动者.欧拉的父亲保罗·欧拉(Paul Euler)则毕业于巴塞尔大学神学系,是基督教新教的牧师.1706年,保罗与另一位牧师的女儿玛格丽特·勃鲁克(Margarete Brucker)结婚.翌年春,欧拉降生.1708年,保罗举家迁居巴塞尔附近的村庄——里亨(Riehen).欧拉就在这田园静谧的乡村度过他的童年.
欧拉的父亲很喜爱数学.还在大学读书时,他就常去听雅格布·伯努利(Jakob Bernouli)的数学讲座.他亲自对欧拉进行包括数学在内的启蒙教育,并盼望儿子成为教门的后起之秀.贤惠的母亲为了使欧拉及时受到良好的学校教育,把他送到巴塞尔外祖母家生活了几年,入那里的一所文科中学念书.可是,这所学校不教数学.勤勉好学的欧拉独自随业余数学家J.伯克哈特(Bu-rckhart)学习.欧拉聪敏早慧,酷爱数学.他曾下苦功研读C.鲁道夫(Rudolf)的《代数学》(Algebra,1553)达数年之久.
1720年秋,年仅13岁的欧拉进了巴塞尔大学文科.当时,约翰·伯努利(Johann Bernoulli)任该校数学教授.他每天讲授基础数学课程,同时还给那些有兴趣的少数高材生开设更高深的数学、物理学讲座.欧拉是约翰·伯努利的最忠实的听众.他勤奋地学习所有的科目,但仍不满足.欧拉后来在自传中写道:“……不久,我找到了一个把自己介绍给着名的约翰·伯努利教授的机会.……他确实忙极了,因此断然拒绝给我个别授课.但是,他给了我许多更加宝贵的忠告,使我开始独立地学习更困难的数学着作,尽我所能努力地去研究它们.如果我遇到什么障碍或困难,他允许我每星期六下午自由地去找他,他总是和蔼地为我解答一切疑难……无疑,这是在数学学科上获得成功的最好的方法.”约翰的两个儿子尼吉拉·伯努利第二(Nikolaus Bernoulli II)、丹尼尔·伯努利(Daniel Bernoulli),也成了欧拉的挚友.
1722年夏,欧拉在巴塞尔大学获学士学位.翌年,他又获哲学硕士学位.但授予这一学位是在1724年6月8日的会议上正式通告的.此前,他为了满足父亲的愿望,于1723年秋又入神学系.他在神学、希腊语、希伯莱语方面的学习并不成功.他仍把大部分时间花在数学上.尽管欧拉后来彻底放弃了当牧师的念头,但他却终生虔诚地信奉基督教.
欧拉18岁开始其数学研究生涯.1726年,他在《博学者》(Acta eruditorum)上发表了关于在有阻尼的介质中的等时曲线结构问题的文章.翌年,他研究弹道问题和船桅的最佳布置问题.后者是这年巴黎科学院的有奖征文课题.欧拉的论文虽未获得奖金,却得到了荣誉提名.此后,从1738年至1772年,欧拉共获得巴黎科学院12次奖金.
在瑞士,当时青年数学家的工作条件非常艰难,而俄国新组建的圣彼得堡科学院正在网罗人才.1725年秋,尼古拉第二和丹尼尔应聘前往俄国,并向当局力荐欧拉.翌年秋,欧拉在巴塞尔收到圣彼得堡科学院的聘书,请他去那里任生理学院士助理.然而,故土难离.欧拉开始用数学和力学方法研究生理学,同时仍期望在巴塞尔大学找到职位.恰好,这时该校有一位物理学教授病故,出现空席.欧拉向学校教授评议会递交了“论声音的物理学原理”(Dissertatio physica de sono,1727)的论文,争取教授资格.在激烈的竞争中,未满20岁的欧拉落选了.1727年4月5日欧拉告别故乡,5月24日抵达圣彼得堡.从那时起,欧拉的一生和他的科学工作都紧密地同圣彼得堡科学院和俄国联系在一起.他再也没有回过瑞士.但是,出于对祖国的深厚感情,欧拉始终保留了他的瑞士国籍.
欧拉到达圣彼得堡后,立即开始研究工作.不久,他获得了在真正擅长的领域从事研究工作的机会.1727年,他被任命为科学院数学部助理院士.他撰写的关于圣彼得堡科学院学术会议情况的调查报告,也开始在《圣彼得堡科学院汇刊(1727)》(Comme-ntarii Academiae scientiarum imperialis Petropolitanae)第二卷(St.Petersburg,1729)上发表.尽管那些年俄国政局动荡,圣彼得堡科学院还处在艰难岁月之中,但周围的学术气氛对发展欧拉的才华特别有利.那里聚集着一群杰出的科学家,如数学家C.哥德巴赫(Goldbach)、丹尼尔·伯努利,力学家J.赫尔曼(Hermann),三角学家F.梅尔(Maier),天文学家和地理学家J.N.德莱索(Delisle)等.他们同欧拉的个人情谊与共同的科学兴趣,使得彼此在科研工作中配合默契、相得益彰.1731年,欧拉成为物理学教授.1733年,丹尼尔·伯努利返回巴塞尔后,欧拉接替了他的数学教授职务,担负起领导科学院数学部的重任.这对亲密的朋友,以后通信40多年,促进了科学的竞争和发展.是年冬,欧拉和科学院预科学校的美术教师、瑞士画家G.葛塞尔(Gsell)的女儿柯黛林娜·葛塞尔(Katharina Gsell)结婚.翌年,其长子约翰·阿尔勃兰克(Johann Albrecht)降生.1740年,卡尔(Karl)出世.恬静、美满的家庭生活伴随着欧拉科学生涯的第一个黄金时期.
还在圣彼得堡科学院建成之初,俄国政府就责成它除了进行纯科学研究之外,还要培养、训练俄国科学家.为此,科学院建立了一所大学和预科学校,大学办了近50年,预科学校一直办到1805年.俄国政府还委托科学院制定俄国的地图,解决各种具体技术问题.欧拉积极参与并领导了科学院的这些工作.从1733年起,他和德莱索成功地进行了地图研究.从30年代中期开始,欧拉以极大的精力研究航海和船舶建造问题.这些问题对于俄国成为海上强国,是具有重大意义的.欧拉是各种技术委员会的成员,又担任科学院考试委员会委员.他既要为科学院的期刊撰稿、审稿,还要为附属大学、预科学校准备讲义、开设讲座,工作十分忙碌.然而,他的主要成就是在数学研究上.
在圣彼得堡的头14年间,欧拉以无可匹敌的工作效率在分析学、数论和力学等领域作出许多辉煌的发现.截止1741年,他完成了近90种着作,公开发表了55种,其中包括1936年完成的两卷本《力学或运动科学的分析解说》(Mechanica sive motus scie-ntia analytice exposita).他的研究硕果累累,声望与日俱增,赢得了各国科学家的尊敬.欧拉从前的导师约翰·伯努利早在1728年的信中就称他为“最善于学习和最有天赋的科学家”,1737年又称他是“最驰名和最博学的数学家”.欧拉后来谦逊地说:“……我和所有其他有幸在俄罗斯帝国科学院工作过一段时间的人都不能不承认,我们应把所获得的一切和所掌握的一切归功于我们在那儿拥有的有利条件.”
由于过度的劳累,1738年,欧拉在一场疾病之后右眼失明了.但他仍旧坚韧不拔地工作.他热爱科学,热爱生活.他非常喜欢孩子(他一生有过13个孩子,除了5个以外都夭亡了).写论文时往往膝上抱着婴儿,大一点的孩子则绕膝戏耍.他酷爱音乐.在撰写艰深的数学论文时,他的“那种轻松自如是令人难以置信的”.
1740年秋冬,俄国政局再度骤变,形势极不安定.欧拉此时与圣彼得堡科学院粗鲁、专横的顾问J.D.舒马赫尔(Schuma-cher)也产生了磨擦.为了使自己的科学事业不受损害,欧拉希望寻求新的出路.恰好这年夏天继承了普鲁士王位的腓特烈(Frederick)大帝决定重振柏林科学院,他热情邀请欧拉去柏林工作.欧拉接受了邀请.1741年6月19日,欧拉启程离开圣彼得堡,7月25日抵达柏林.
柏林科学院是在G.W.莱布尼茨(Leibniz)的大力推动下于1700年创立的,后来它衰落了.欧拉在柏林25年.那时,他精力旺盛,不知疲倦地工作.他鼎力襄助院长P.莫佩蒂(Maupe-rtuis),在恢复和发展柏林科学院的工作中发挥了重大作用.
在柏林,欧拉任科学院数学部主任.他是科学院的院务委员、图书馆顾问和学术着作出版委员会委员.他还担负了其他许多行政事务,如管理天文台和植物园,提出人事安排,监督财务,以及历书和地图的出版工作.当院长莫佩蒂外出期间,欧拉代理院长.1759年莫佩蒂去世后,虽然没有正式任命欧拉为院长,但他实际上一直领导着科学院的工作.欧拉和莫佩蒂的友谊,使欧拉能对柏林科学院的一切活动,尤其是在选拔院士方面,施加巨大影响.
欧拉还担任过普鲁士政府关于安全保险、退休金和抚恤金等问题的顾问,并为腓特烈大帝了解火炮方面的最新成果(1745年),设计改造费诺运河(1749年),曾主管普鲁士皇家别墅水力系统管系和泵系的设计工作.他和德国许多大学的教授保持广泛联系,对大学教科书的编写和数学教学起了促进作用.
在此期间,欧拉一直保留着圣彼得堡科学院院士资格,领取年俸.受该院委托,欧拉为其编纂院刊的数学部分,介绍西欧的科学思想,购买书籍和科学仪器,同时推荐研究人员和课题.他在培养俄国的科学人才方面起了重大的作用.他还经常把自己的学术论文寄往圣彼得堡.他的论文约有一半是用拉丁文在圣彼得堡发表的,另一半用法文在柏林出版.另外,他还先后当选为伦敦皇家学会会员(1749年)、巴塞尔物理数学会会员(1753年)及巴黎科学院院士(1755年).
柏林时期是欧拉科学研究的鼎盛时期,其研究范围迅速扩大.他与J.K.达朗贝尔(D’Alembert)和丹尼尔·伯努利展开的学术竞争奠定了数学物理的基础;他与A.克莱罗(Clairaut)和达朗贝尔一起推进了月球和行星运动理论的研究.与此同时,欧拉详尽地阐述了刚体运动理论,创立了流体动力学的数学模型,深入地研究了光学和电磁学,以及消色差折射望远镜等许多技术问题.他写了大约380篇(部)论着,出版了其中的275种.内有分析学、力学、天文学、火炮和弹道学、船舶建造和航海等方面的几部巨着,其中1748年出版的两卷集着作《无穷分析引论》(Intro-ctio in analysin infinitorum)在数学史上占有十分重要的地位.
欧拉参加了18世纪40年代关于莱布尼茨和C.沃尔夫(Wolff)的单子论的激烈辩论.欧拉在自然哲学方面接近R.笛卡儿(Descartes)的机械唯物主义,他和莫佩蒂都是单子论的“劲敌”.1751年,S.柯尼格(K nig)以耸入听闻的新论据,发表了几篇批评莫佩蒂的“最小作用原理”的文章.欧拉翌年撰文反驳,并同莫佩蒂用更浅显的语言来解释最小作用原理.除了这些哲学和科学的争论以外,对于数学的发展来说,欧拉参加了另外三场更重要的争论:与达朗贝尔关于负数对数的争论;与达朗贝尔、丹尼尔·伯努利关于求解弦振动方程的争论;与J.多伦(Dollond)关于光学问题的争论.
1759年莫佩蒂去世后,欧拉在普鲁士国王的直接监督之下负责柏林科学院的工作.欧拉同腓特烈大帝之间的关系并不融洽.1763年,当获悉腓特烈想把院长的职务授予达朗贝尔后,欧拉开始考虑离开柏林.圣彼得堡科学院立即遵照卡捷琳娜(Catherine)女皇旨意寄给欧拉聘书,诚挚希望他重返圣彼得堡.但是达朗贝尔拒绝长期移居柏林,使腓特烈一度推迟就院长入选作最后的决定.“七年战争”之后,腓特烈粗暴地干涉欧拉对柏林科学院的事务管理.1765年至1766年,在财政问题上,欧拉与腓特烈之间引发了一场严重的冲突.他恳请普鲁士国王同意他离开柏林.1766年7月28日,欧拉重返圣彼得堡,他的三个儿子和两个女儿也回到俄国,伴于身旁.
欧拉的家安置在涅瓦河畔离圣彼得堡科学院不远的舒适之处.他的长子阿尔勃兰克这年成为科学院院士、物理学部教授,三年后又被任命为科学院的终身秘书.1766年,欧拉父子还同时当选为科学院执行委员.欧拉的工作是顺心的,然而,厄运也接二连三地向他袭来.回到圣彼得堡不久,一场疾病使欧拉的左眼几乎完全失明.这时,他已经不能再看书了.只能勉强看清大字体的提纲,用粉笔在石板上写很大的字母.1771年,欧拉双目完全失明.这一年,圣彼得堡的一场特大火灾又使欧拉的住所和财产付之一炬,仅抢救出欧拉及其手稿. 1773年 11月,欧拉夫人柯黛琳娜去世.三年后,她同父异母的妹妹莎洛姆·葛塞尔(SalomeGsell)成为欧拉的第二个妻子.
欧拉晚年遭受双目失明、火灾和丧偶的沉重打击,他仍不屈不挠地奋斗,丝毫没有减少科学活动.在他的周围,有一群主动的合作者,包括:他的儿子阿尔勃兰克和克利斯朵夫(Christoph); W.L.克拉夫特(Krafft)院士和A.J.莱克塞尔(Lexell)院士;两位年轻的助手N.富斯(Fuss)和M.E.哥洛文(Golovin).欧拉和他们一起讨论着作出版的总计划,有时简要地口述研究成果.他们则使欧拉的设想变得更加明确,有时还为欧拉的论着编纂例证.据富斯自己统计,七年内他为欧拉整理论文250篇,哥洛文整理了70篇.欧拉非常尊重别人的劳动.1772年出版的《月球运动理论和计算方法》(Theoria motuum lunae, nova methodoPertractata)是在阿尔勃兰克、克拉夫特和莱克塞尔的帮助下完成的,欧拉把他们的名字都印在这本书的扉页上.
重返圣彼得堡后,欧拉的着作出版得更多.他的论着几乎有一半是1765年以后出版的.其中,包括他的三卷本《积分学原理》(Institutiones calculi integralis, 1768—1770)和《关于物理学和哲学问题给德韶公主的信》(Lettresà une princesse d’AllemagneSur divers sujets de physique et de philosophie, 1768—1772).前者的最重要部分是在柏林完成的.后者产生于欧拉给普鲁士国王的侄女的授课内容.这本文笔优雅、通俗易懂的科学着作出版后,很快就在欧洲翻译成多种文字,畅销各国,经久不衰.欧拉是历史上着作最多的数学家.
欧拉的多产也得益于他一生非凡的记忆力和心算能力.他70岁时还能准确地回忆起他年轻时读的荷马史诗《伊利亚特》(Iliad)每页的头行和末行.他能够背诵出当时数学领域的主要公式和前100个素数的前六次幂.M.孔多塞(Condorcet)讲述过一个例子,足以说明欧拉的心算本领:欧拉的两个学生把一个颇为复杂的收敛级数的17项相加起来,算到第50位数字时因相差一个单位而产生了争执.为了确定谁正确,欧拉对整个计算过程进行心算,最后把错误找出来了.
1783年9月18日,欧拉跟往常一样,度过了这一天的前半天.他给孙女辅导了一节数学课,用粉笔在两块黑板上作了有关气球运动的计算,然后同莱克塞尔和富斯讨论两年前F.W.赫歇尔(Herschel)发现的天王星的轨道计算.大约下午5时,欧拉突然脑出血,他只说了一句“我要死了”,就失去知觉.晚上11时,欧拉停上了呼吸.
欧拉逝世不久,富斯和孔多塞分别在圣彼得堡科学院和巴黎科学院的追悼会上致悼词.孔多塞在悼词的结尾耐人寻味地说:“欧拉停止了生命,也停止了计算.”
欧拉的菩作在他生前已经有多种输入了中国,其中包括着名的、1748年初版本的《无穷分析引论》.这些着作有一部分曾藏于北京北堂图书馆.它们是18世纪40年代由圣彼得堡科学院赠给北京耶稣会或北京南堂耶稣学院的.这也是中俄数学早期交流的一个明证.19世纪70年代,清代数学家华蘅芳和英国人傅兰雅(John Fryer)合译的《代数术》(1873)和《微积溯源》(1874),都介绍了欧拉学说.在此前后,李善兰和伟烈亚力(Alexander Wylie)合译的《代数学》(1859)、赵元益译的《光学》(1876)、黄钟骏的《畴人传四编》(1898)等着作也记载了欧拉学说或欧拉的事迹(详见文献[32]).中国人民是很早就熟悉欧拉的.欧拉不仅属于瑞士,也属于整个文明世界.着名数学史家A.П.尤什凯维奇(Юшкевич)说,人们可以借B.丰唐内尔(Fontenelle)评价莱布尼茨的话来评价欧拉,“他是乐于看到自己提供的种子在别人的植物园里开花的人.”
在欧拉的全部科学贡献中,其数学成就占据最突出的地位.他在力学、天文学、物理学等方面也闪现着耀眼的光芒.
(转自《数学家传记大辞典》,张洪光)
⑤ 俄罗斯数学学派的创始人是谁
俄罗斯数学学派的创始人是( 欧拉 )
莱昂哈德·欧拉(Leonhard Euler ,1707年4月15日~1783年9月18日),出生在瑞士巴塞尔 。
欧拉于1727年抵达圣彼得堡,在俄罗斯皇家科学院工作,并担任科学院数学教授。
欧拉在俄国生活了 30 多年,他积极将先进的科学知识传入长期闭塞落后的俄罗斯,创立了俄罗斯第一个数学学派——欧拉学派,亲手将一大批俄罗斯青年引进了辉煌的数学殿堂。在许多前苏联和俄罗斯的书籍里,都亲切地称欧拉是“伟大的俄罗斯数学家”。
欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把整个数学推至物理的领域。他是数学史上最多产的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、变分法等的课本,《无穷小分析引论》、《微分学原理》、《积分学原理》等都成为数学界中的经典着作。欧拉对数学的研究如此之广泛,因此在许多数学的分支中也可经常见到以他的名字命名的重要常数、公式和定理。此外欧拉还涉及建筑学、弹道学、航海学等领域。
⑥ 欧拉的成就
欧拉
一数学
欧拉(Leonhard Euler 公元1707-1783年) 1707年出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导.
欧拉渊博的知识,无穷无尽的创作精力和空前丰富的着作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文.到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清.他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为"分析学的化身".
欧拉是科学史上最多产的一位杰出的数学家,据统计他那不倦的一生,共写下了886本书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的着作,足足忙碌了四十七年.
欧拉着作的惊人多产并不是偶然的,他可以在任何不良的环境中工作,他常常抱着孩子在膝上完成论文,也不顾孩子在旁边喧哗.他那顽强的毅力和孜孜不倦的治学精神,使他在双目失明以后, 也没有停止对数学的研究,在失明后的17年间,他还口述了几本书和400篇左右的论文.19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的着作永远是了解数学的最好方法."
欧拉的父亲保罗·欧拉(Paul Euler)也是一个数学家,原希望小欧拉学神学,同时教他一点数学.由于小欧拉的才人和异常勤奋的精神,又受到约翰·伯努利的赏识和特殊指导,当他在19岁时写了一篇关于船桅的论文,获得巴黎科学院的奖的奖金后,他的父亲就不再反对他攻读数学了.
1725年约翰·伯努利的儿子丹尼尔·伯努利赴俄国,并向沙皇喀德林一世推荐了欧拉,这样,在1727年5月17日欧拉来到了彼得堡.1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授.1735年,欧拉解决了一个天文学的难题(计算彗星轨道),这个问题经几个着名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了.然而过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁.1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明.不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了.
沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来.在他完全失明之前,还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容,由他的学生特别是大儿子A·欧拉(数学家和物理学家)笔录.欧拉完全失明以后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久.
欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成.有一个例子足以说明他的本领,欧拉的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来.欧拉在失明的17年中;还解决了使牛顿头痛的月离问题和很多复杂的分析问题.
欧拉的风格是很高的,拉格朗日是稍后于欧拉的大数学家,从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生.等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,1759年10月2日欧拉在回信中盛称拉格朗日的成就,并谦虚地压下自己在这方面较不成熟的作品暂不发表,使年青的拉格朗日的工作得以发表和流传,并赢得巨大的声誉.他晚年的时候,欧洲所有的数学家都把他当作老师,着名数学家拉普拉斯(Laplace)曾说过:"欧拉是我们的导师." 欧拉充沛的精力保持到最后一刻,1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:"我死了",欧拉终于"停止了生命和计算".
欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得我们学习的.欧拉在数学、物理、天文、建筑以至音乐、哲学方面都取得了辉煌的成就。在数学的各个领域,常常见到以欧来命名的公式、定理、和重要常数。课本上常见的如π(1736年),i(1777年),e(1748年),sin和cos(1748年),tg(1753年),△x(1755年),∑(1755年),f(x)(1734年)等,都是他创立并推广的。歌德巴赫猜想也是在他与歌德巴赫的通信中提出来的。欧来还首先完成了月球绕地球运动的精确理论,创立了分析力学、刚体力学等力学学科,深化了望远镜、显微镜的设计计算理论。
欧来一生能取得伟大的成就原因在于:惊人的记忆力;聚精会神,从不受嘈杂和喧闹的干扰;镇静自若,孜孜不倦。
欧拉是18世纪最优秀的数学家,也是历史上最伟大的数学家之一。
1707年4月15日,欧拉诞生于瑞士的巴塞尔。小时候他就特别喜欢数学,不满10岁就开始自学《代数学》。这本书连他的几位老师都没读过,可小欧拉却读得津津有味,遇到不懂的地方,就用笔作个记号,事后再向别人请教。1720年,13岁的欧拉靠自己的努力考入了巴塞尔大学。这在当时是个奇迹,曾轰动了数学界。小欧拉是这所大学,也是整个瑞士大学校园里年龄最小的学生。
欧拉大学毕业后到了俄国的首都彼得堡。在他26岁时,担任了彼得堡科学院的数学教授。1735年,年仅28岁的欧拉,由于要计算一个彗星的轨道,奋战了三天三夜,最后用他自己发明的新方法圆满地解决了这个难题。过度的工作,使欧拉得了眼病,就在那一年他右眼失明了。疾病没有吓倒他,他更加勤奋地工作,写出了几百篇论文,大量出色的研究成果,使他在欧洲科学界享有很高的声望。在他59岁时,仅剩的一只左眼视力衰退,只能模糊地看到物体,最后双目失明。但是工作就是他的生命,他决心用加倍的努力,来回答命运对他的挑战。眼睛看不见,他就口述,由他的儿子记录,继续写作。欧拉凭着他惊人的记忆力和心算能力,在黑暗中整整工作了17年。
1783年9月18日,在不久前才刚计算完气球上升定律的欧拉,在兴奋中突然停止了呼吸,享年76岁。欧拉生活、工作过的三个国家:瑞士、俄国、德国,都把欧拉作为自己的数学家,为有他而感到骄傲。
二科学
欧拉,匈牙利裔美国人,由于他发现了使碳阳离子保持稳定的方法,在碳正离子化学方面的研究而获奖。研究范畴属有机化学,在碳氢化合物方面的成就尤其卓着。早在60年代就发表大量研究报告并享誉国际科学界,是化学领域里的一位重要人物,他的这项基础研究成果对炼油技术作出了重大贡献,这项成果彻底改变了对碳阳离子这种极不稳定的碳氢化合物的研究方式,揭开了人们对阳离子结构认识的新一页,更为重要的是他的发现可广泛用于从提高炼油效率,生产无铅汽油到改善塑料制品质量及研究制造新药等各个行业,对改善人民生活起着重要作用。
⑦ 介绍数学家欧拉
莱昂哈德·欧拉(Leonhard Euler ,1707年4月5日~1783年9月18日)是瑞士数学家和物理学家。他被一些数学史学者称为历史上最伟大的两位数学家之一(另一位是卡尔·弗里德里克·高斯)。欧拉是第一个使用“函数”一词来描述包含各种参数的表达式的人,例如:y = F(x) (函数的定义由莱布尼兹在1694年给出)。他是把微积分应用于物理学的先驱者之一。
欧拉1707年4月15日出生于瑞士,在那里受教育。他一生大部分时间在俄罗斯帝国和普鲁士度过。欧拉是一位数学神童。他作为数学教授,先后任教于圣彼得堡和柏林,尔后再返圣彼得堡。欧拉是有史以来最多遗产的数学家,他的全集共计75卷。欧拉实际上支配了18世纪的数学,对于当时的新发明微积分,他推导出了很多结果。在他生命的最后7年中,欧拉的双目完全失明,尽管如此,他还是以惊人的速度产出了生平一半的着作。
欧拉的一生很虔诚。然而,那个广泛流传的传说却不是真的。传说中说到,欧拉在叶卡捷琳娜二世的宫廷里,挑战德尼·狄德罗:“先生,因为(a+b^n)/n = x;所以上帝存在,请回答!”
欧拉的离世也很特别:在朋友的派对中他中途退场去工作,最后伏在书桌上安静的去了。
欧拉曾任彼得堡科学院教授,柏林科学院的创始人之一。他是刚体力学和流体力学的奠基者,弹性系统稳定性理论的开创人。他认为质点动力学微分方程可以应用于液体(1750)。他曾用两种方法来描述流体的运动,即分别根据空间固定点(1755)和根据确定的流体质点(1759)描述流体速度场。前者称为欧拉法,后者称为拉格朗日法。欧拉奠定了理想流体的理论基础,给出了反映质量守恒的连续方程(1752)和反映动量变化规律的流体动力学方程(1755)。
欧拉在固体力学方面的着述也很多,诸如弹性压杆失稳后的形状,上端悬挂重链的振动问题,等等。
欧拉的专着和论文多达800多种。
小行星欧拉2002是为了纪念欧拉而命名的。